Enhancing the cryogenic performance of superconducting magnet encapsulation resins with hyperbranched polymers: A molecular dynamics simulation and experimental study

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
{"title":"Enhancing the cryogenic performance of superconducting magnet encapsulation resins with hyperbranched polymers: A molecular dynamics simulation and experimental study","authors":"","doi":"10.1016/j.cryogenics.2024.103919","DOIUrl":null,"url":null,"abstract":"<div><p>Epoxy resin (EP) plays a crucial role in safeguarding superconducting magnets. One of the major concerns related to its usage is its inherent susceptibility to cracking under cryogenic temperatures and the strong electromagnetic forces experienced during the operation of superconducting magnets. In this study, we utilize molecular dynamics (MD)simulation and cryogenic experiments to conduct a comprehensive investigation aimed at gaining a profound understanding of the cryogenic toughening mechanism in hyperbranched polymers-toughened (HBPs) EPs. Five different crosslinking models of EP composites were established by MD simulations. The performance parameters obtained from the MD simulation calculations are highly consistent with the experimental results, which included the glass transition temperature, coefficient of thermal expansion, mechanical properties, free volume and atomic mean square displacement. Moreover, the relationship between structural changes and properties of the MD models was investigated. This research method provides a new avenue of exploration for superconducting magnet encapsulation resin materials.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy resin (EP) plays a crucial role in safeguarding superconducting magnets. One of the major concerns related to its usage is its inherent susceptibility to cracking under cryogenic temperatures and the strong electromagnetic forces experienced during the operation of superconducting magnets. In this study, we utilize molecular dynamics (MD)simulation and cryogenic experiments to conduct a comprehensive investigation aimed at gaining a profound understanding of the cryogenic toughening mechanism in hyperbranched polymers-toughened (HBPs) EPs. Five different crosslinking models of EP composites were established by MD simulations. The performance parameters obtained from the MD simulation calculations are highly consistent with the experimental results, which included the glass transition temperature, coefficient of thermal expansion, mechanical properties, free volume and atomic mean square displacement. Moreover, the relationship between structural changes and properties of the MD models was investigated. This research method provides a new avenue of exploration for superconducting magnet encapsulation resin materials.

利用超支化聚合物提高超导磁体封装树脂的低温性能:分子动力学模拟和实验研究
环氧树脂(EP)在保护超导磁体方面起着至关重要的作用。与使用环氧树脂有关的一个主要问题是,环氧树脂在低温条件下和超导磁体运行过程中的强电磁力作用下容易开裂。在本研究中,我们利用分子动力学(MD)模拟和低温实验进行了全面研究,旨在深刻理解超支化聚合物增韧 EPs 的低温增韧机制。通过 MD 模拟建立了五种不同的 EP 复合材料交联模型。MD 模拟计算得到的性能参数与实验结果高度一致,包括玻璃化转变温度、热膨胀系数、力学性能、自由体积和原子均方位移。此外,还研究了 MD 模型的结构变化与性能之间的关系。该研究方法为超导磁体封装树脂材料提供了一条新的探索途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信