On decay properties for solutions of the Zakharov–Kuznetsov equation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A.J. Mendez , Oscar Riaño
{"title":"On decay properties for solutions of the Zakharov–Kuznetsov equation","authors":"A.J. Mendez ,&nbsp;Oscar Riaño","doi":"10.1016/j.nonrwa.2024.104183","DOIUrl":null,"url":null,"abstract":"<div><p>This work mainly focuses on spatial decay properties of solutions to the Zakharov–Kuznetsov equation. For the two- and three-dimensional cases, it was established that if the initial condition <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> verifies <span><math><mrow><msup><mrow><mrow><mo>〈</mo><mi>σ</mi><mi>⋅</mi><mi>x</mi><mo>〉</mo></mrow></mrow><mrow><mi>r</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mfenced><mrow><mi>σ</mi><mi>⋅</mi><mi>x</mi><mo>≥</mo><mi>κ</mi></mrow></mfenced><mo>)</mo></mrow><mo>,</mo></mrow></math></span> for some <span><math><mrow><mi>r</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>κ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, being <span><math><mi>σ</mi></math></span> be a suitable non-null vector in the Euclidean space, then the corresponding solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> generated from this initial condition verifies <span><math><mrow><msup><mrow><mrow><mo>〈</mo><mi>σ</mi><mi>⋅</mi><mi>x</mi><mo>〉</mo></mrow></mrow><mrow><mi>r</mi></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mfenced><mrow><mfenced><mrow><mi>σ</mi><mi>⋅</mi><mi>x</mi><mo>&gt;</mo><mi>κ</mi><mo>−</mo><mi>ν</mi><mi>t</mi></mrow></mfenced></mrow></mfenced></mrow></math></span>, for any <span><math><mrow><mi>ν</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. Additionally, depending on the magnitude of the weight <span><math><mi>r</mi></math></span>, it was also deduced some localized gain of regularity. In this regard, we first extend such results to arbitrary dimensions, decay power <span><math><mrow><mi>r</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> not necessarily an integer, and we give a detailed description of the gain of regularity propagated by solutions. The deduction of our results depends on a new class of pseudo-differential operators, which is useful for quantifying decay and smoothness properties on a fractional scale. Secondly, we show that if the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> has a decay of exponential type on a particular half space, that is, <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mspace></mspace><mi>σ</mi><mi>⋅</mi><mi>x</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mfenced><mrow><mi>σ</mi><mi>⋅</mi><mi>x</mi><mo>≥</mo><mi>κ</mi></mrow></mfenced><mo>)</mo></mrow><mo>,</mo></mrow></math></span> then the corresponding solution satisfies <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mspace></mspace><mi>σ</mi><mi>⋅</mi><mi>x</mi></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mfenced><mrow><mi>σ</mi><mi>⋅</mi><mi>x</mi><mo>&gt;</mo><mi>κ</mi><mo>−</mo><mi>t</mi></mrow></mfenced></mrow></mfenced><mo>,</mo></mrow></math></span> for all <span><math><mrow><mi>p</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, and time <span><math><mrow><mi>t</mi><mo>≥</mo><mi>δ</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>δ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. To our knowledge, this is the first study of such property. As a further consequence, we also obtain well-posedness results in anisotropic weighted Sobolev spaces in arbitrary dimensions.</p><p>Finally, as a by-product of the techniques considered here, we show that our results are also valid for solutions of the Korteweg–de Vries equation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001226","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work mainly focuses on spatial decay properties of solutions to the Zakharov–Kuznetsov equation. For the two- and three-dimensional cases, it was established that if the initial condition u0 verifies σxru0L2(σxκ), for some rN, κR, being σ be a suitable non-null vector in the Euclidean space, then the corresponding solution u(t) generated from this initial condition verifies σxru(t)L2σx>κνt, for any ν>0. Additionally, depending on the magnitude of the weight r, it was also deduced some localized gain of regularity. In this regard, we first extend such results to arbitrary dimensions, decay power r>0 not necessarily an integer, and we give a detailed description of the gain of regularity propagated by solutions. The deduction of our results depends on a new class of pseudo-differential operators, which is useful for quantifying decay and smoothness properties on a fractional scale. Secondly, we show that if the initial data u0 has a decay of exponential type on a particular half space, that is, ebσxu0L2(σxκ), then the corresponding solution satisfies ebσxu(t)Hpσx>κt, for all pN, and time tδ, where δ>0. To our knowledge, this is the first study of such property. As a further consequence, we also obtain well-posedness results in anisotropic weighted Sobolev spaces in arbitrary dimensions.

Finally, as a by-product of the techniques considered here, we show that our results are also valid for solutions of the Korteweg–de Vries equation.

论扎哈罗夫-库兹涅佐夫方程解的衰变特性
这项工作主要关注扎哈罗夫-库兹涅佐夫方程解的空间衰减特性。对于二维和三维情况,已经确定如果初始条件 u0 验证了〈σ⋅x〉∈ru0∈L2(σ⋅x≥κ),对于某个 r∈N,κ∈R、σ是欧几里得空间中一个合适的非空向量,那么由该初始条件产生的相应解 u(t) 验证了 〈σ⋅x〉ru(t)∈L2σ⋅x>;κ-νt,对于任意 ν>0。此外,根据权重 r 的大小,还可以推导出一些局部的正则性增益。在这方面,我们首先将这些结果扩展到任意维度,衰减权重 r>0 不一定是整数,并详细描述了解传播的正则性增益。我们结果的推导依赖于一类新的伪微分算子,这对于量化分数尺度上的衰减和平滑特性非常有用。其次,我们证明了如果初始数据 u0 在特定的半空间上具有指数型衰减,即 ebσ⋅xu0∈L2(σ⋅x≥κ), 那么相应的解满足 ebσ⋅xu(t)∈Hpσ⋅x>κ-t, 对于所有 p∈N, 时间 t≥δ, 其中 δ>0.据我们所知,这是对这种性质的首次研究。作为进一步的结果,我们还获得了在任意维度的各向异性加权索博廖夫空间中的好求结果。最后,作为本文所考虑的技术的副产品,我们证明了我们的结果对于 Korteweg-de Vries 方程的解也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信