Predictive performance assessment of recycled coarse aggregate concrete using artificial intelligence: A review

Parveen Kumari , Sagar Paruthi , Ahmad Alyaseen , Afzal Husain Khan , Alpana Jijja
{"title":"Predictive performance assessment of recycled coarse aggregate concrete using artificial intelligence: A review","authors":"Parveen Kumari ,&nbsp;Sagar Paruthi ,&nbsp;Ahmad Alyaseen ,&nbsp;Afzal Husain Khan ,&nbsp;Alpana Jijja","doi":"10.1016/j.clema.2024.100263","DOIUrl":null,"url":null,"abstract":"<div><p>Recycled coarse aggregate concrete enables the creation of environmentally friendly and cost-effective mixes. It helps address the disposal problem of demolition concrete waste, meeting demand while improving product functionality and reusability. The abundance of obsolete buildings in cemeteries contributes to Construction and Demolition waste. Recycled Concrete Aggregate (RCA) from demolished structures can be utilized as aggregates, albeit with concerns about its impact on compressive strength due to absorption issues. This review aimed to study and develop the different Artificial Intelligence (AI) model for the prediction of the compressive strength of concrete with varying RCA content and natural coarse aggregate content as input parameters while compressive strength as output parameter. The range of the input parameters is 0 % to 100 % while the range output parameter is 28 MPa to 70.3 MPa. Experimental data from literature articles used to train and validate the model development. Engineers and researchers can utilize these models to predict compressive strength by changing the input parameters. XGBoost Regression Model performed well with R<sup>2</sup> 0.93594 followed by Random Forest Model with R<sup>2</sup> 0.92766, and Gradient Boosting Model with R<sup>2</sup> 0.90616 respectively. Ridge Regression, Lasso Regression, and Linear Regression Models were not performed well in predicting the compressive strength of RCA concrete with R<sup>2</sup> 0.57657, 0.57558, 0.57675 respectively. ANN also performed significant in prediction of RCAC compressive strength with R<sup>2</sup> 0.8039. Future research could focus on optimizing the mechanical properties of concrete containing RCA using AI models. Furthermore, the study extends its analysis to explore the application of AI in predicting the strength of various types of concrete, highlighting the versatility and potential of AI-driven approaches in enhancing concrete mix design.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100263"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000479/pdfft?md5=87db1fd8230120c69c7a10eb527947f6&pid=1-s2.0-S2772397624000479-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recycled coarse aggregate concrete enables the creation of environmentally friendly and cost-effective mixes. It helps address the disposal problem of demolition concrete waste, meeting demand while improving product functionality and reusability. The abundance of obsolete buildings in cemeteries contributes to Construction and Demolition waste. Recycled Concrete Aggregate (RCA) from demolished structures can be utilized as aggregates, albeit with concerns about its impact on compressive strength due to absorption issues. This review aimed to study and develop the different Artificial Intelligence (AI) model for the prediction of the compressive strength of concrete with varying RCA content and natural coarse aggregate content as input parameters while compressive strength as output parameter. The range of the input parameters is 0 % to 100 % while the range output parameter is 28 MPa to 70.3 MPa. Experimental data from literature articles used to train and validate the model development. Engineers and researchers can utilize these models to predict compressive strength by changing the input parameters. XGBoost Regression Model performed well with R2 0.93594 followed by Random Forest Model with R2 0.92766, and Gradient Boosting Model with R2 0.90616 respectively. Ridge Regression, Lasso Regression, and Linear Regression Models were not performed well in predicting the compressive strength of RCA concrete with R2 0.57657, 0.57558, 0.57675 respectively. ANN also performed significant in prediction of RCAC compressive strength with R2 0.8039. Future research could focus on optimizing the mechanical properties of concrete containing RCA using AI models. Furthermore, the study extends its analysis to explore the application of AI in predicting the strength of various types of concrete, highlighting the versatility and potential of AI-driven approaches in enhancing concrete mix design.

利用人工智能对再生粗骨料混凝土进行性能预测评估:综述
再生粗骨料混凝土可制成环保且经济高效的混合料。它有助于解决拆除混凝土废料的处理问题,在满足需求的同时提高产品的功能性和可再利用性。墓地中大量的废旧建筑造成了建筑和拆除垃圾。从拆除结构中回收的混凝土骨料 (RCA) 可用作骨料,但由于吸收问题,其对抗压强度的影响令人担忧。本综述旨在研究和开发用于预测混凝土抗压强度的不同人工智能(AI)模型,以不同的 RCA 含量和天然粗骨料含量作为输入参数,抗压强度作为输出参数。输入参数范围为 0 % 至 100 %,输出参数范围为 28 兆帕至 70.3 兆帕。文献中的实验数据用于训练和验证模型的开发。工程师和研究人员可以利用这些模型,通过改变输入参数来预测抗压强度。XGBoost 回归模型表现良好,R2 为 0.93594,其次是随机森林模型(R2 为 0.92766)和梯度提升模型(R2 为 0.90616)。岭回归、拉索回归和线性回归模型在预测 RCA 混凝土抗压强度方面表现不佳,R2 分别为 0.57657、0.57558 和 0.57675。ANN 在预测 RCAC 抗压强度方面也有显著效果,R2 为 0.8039。未来的研究重点是利用人工智能模型优化含有 RCA 的混凝土的力学性能。此外,该研究还扩展了分析范围,探索了人工智能在预测各种类型混凝土强度方面的应用,突出了人工智能驱动方法在增强混凝土组合设计方面的多功能性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信