Graphs with no even holes and no sector wheels are the union of two chordal graphs

IF 1 3区 数学 Q1 MATHEMATICS
Tara Abrishami , Eli Berger , Maria Chudnovsky , Shira Zerbib
{"title":"Graphs with no even holes and no sector wheels are the union of two chordal graphs","authors":"Tara Abrishami ,&nbsp;Eli Berger ,&nbsp;Maria Chudnovsky ,&nbsp;Shira Zerbib","doi":"10.1016/j.ejc.2024.104035","DOIUrl":null,"url":null,"abstract":"<div><p>Sivaraman (2020) conjectured that if <span><math><mi>G</mi></math></span> is a graph with no induced even cycle then there exist sets <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> satisfying <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> such that the induced graphs <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> are both chordal. We prove this conjecture in the special case where <span><math><mi>G</mi></math></span> contains no sector wheel, namely, a pair <span><math><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> where <span><math><mi>H</mi></math></span> is an induced cycle of <span><math><mi>G</mi></math></span> and <span><math><mi>w</mi></math></span> is a vertex in <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∖</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>∩</mo><mi>H</mi></mrow></math></span> is either <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> or a path with at least three vertices.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001203","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sivaraman (2020) conjectured that if G is a graph with no induced even cycle then there exist sets X1,X2V(G) satisfying V(G)=X1X2 such that the induced graphs G[X1] and G[X2] are both chordal. We prove this conjecture in the special case where G contains no sector wheel, namely, a pair (H,w) where H is an induced cycle of G and w is a vertex in V(G)V(H) such that N(w)H is either V(H) or a path with at least three vertices.

没有偶数孔和扇形轮的图是两个弦图的结合体
Sivaraman (2020) 猜想,如果 G 是一个没有诱导偶数循环的图,那么存在满足 V(G)=X1∪X2 的集合 X1,X2⊆V(G) ,这样诱导图 G[X1] 和 G[X2] 都是弦图。我们在 G 不包含扇形轮的特殊情况下证明了这一猜想,即一对 (H,w),其中 H 是 G 的诱导循环,w 是 V(G)∖V(H) 中的顶点,使得 N(w)∩H 要么是 V(H),要么是至少有三个顶点的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信