{"title":"Two classes of LCD BCH codes over finite fields","authors":"Yuqing Fu , Hongwei Liu","doi":"10.1016/j.ffa.2024.102478","DOIUrl":null,"url":null,"abstract":"<div><p>BCH codes form a special subclass of cyclic codes and have been extensively studied in the past decades. Determining the parameters of BCH codes, however, has been an important but difficult problem. Recently, in order to further investigate the dual codes of BCH codes, the concept of dually-BCH codes was proposed. In this paper, we study BCH codes of lengths <span><math><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, both of which are LCD codes. The dimensions of narrow-sense BCH codes of length <span><math><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> with designed distance <span><math><mi>δ</mi><mo>=</mo><mi>ℓ</mi><msup><mrow><mi>q</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>1</mn></math></span> are determined, where <span><math><mi>q</mi><mo>></mo><mn>2</mn></math></span> and <span><math><mn>2</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>. Lower bounds on the minimum distances of the dual codes of narrow-sense BCH codes of length <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> are developed for odd <em>q</em>, which are good in some cases. Moreover, sufficient and necessary conditions for the even-like subcodes of narrow-sense BCH codes of length <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> being dually-BCH codes are presented, where <em>q</em> is odd and <span><math><mi>m</mi><mo>≢</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001175","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
BCH codes form a special subclass of cyclic codes and have been extensively studied in the past decades. Determining the parameters of BCH codes, however, has been an important but difficult problem. Recently, in order to further investigate the dual codes of BCH codes, the concept of dually-BCH codes was proposed. In this paper, we study BCH codes of lengths and over the finite field , both of which are LCD codes. The dimensions of narrow-sense BCH codes of length with designed distance are determined, where and . Lower bounds on the minimum distances of the dual codes of narrow-sense BCH codes of length are developed for odd q, which are good in some cases. Moreover, sufficient and necessary conditions for the even-like subcodes of narrow-sense BCH codes of length being dually-BCH codes are presented, where q is odd and .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.