Promise of mesenchymal stem cell-derived extracellular vesicles for alleviating subarachnoid hemorrhage-induced brain dysfunction by neuroprotective and antiinflammatory effects
{"title":"Promise of mesenchymal stem cell-derived extracellular vesicles for alleviating subarachnoid hemorrhage-induced brain dysfunction by neuroprotective and antiinflammatory effects","authors":"","doi":"10.1016/j.bbih.2024.100835","DOIUrl":null,"url":null,"abstract":"<div><p>Subarachnoid hemorrhage (SAH), accounting for ∼5% of all strokes, represents a catastrophic subtype of cerebrovascular accident. SAH predominantly results from intracranial aneurysm ruptures and affects ∼30,000 individuals annually in the United States and ∼6 individuals per 100,000 people worldwide. Recent studies have implicated that administering mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be beneficial in inducing neuroprotective and antiinflammatory effects following SAH. EVs are nanosized particles bound by a lipid bilayer. MSC-EVs comprise a therapeutic cargo of nucleic acids, lipids, and proteins, having the promise to ease SAH-induced long-term brain impairments. This review evaluated the findings of published studies on the therapeutic efficacy of MSC-EVs in the context of SAH. A growing body of evidence points out the therapeutic potential of MSC-EVs for improving brain function in animal models of SAH. Specifically, studies demonstrated their ability to reduce neuronal apoptosis and neuroinflammation and enhance neurological recovery through neuroprotective and antiinflammatory mechanisms. Such outcomes reported in various studies suggest that MSC-EVs hold great potential as a novel and minimally invasive approach to ameliorate SAH-induced neurological damage and improve patient outcomes. The review also discusses the limitations of EV therapy and the required future research efforts toward harnessing the full potential of MSC-EVs in treating SAH.</p></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666354624001133/pdfft?md5=67b69f5d381e221a142438beb995c751&pid=1-s2.0-S2666354624001133-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, behavior, & immunity - health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666354624001133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Subarachnoid hemorrhage (SAH), accounting for ∼5% of all strokes, represents a catastrophic subtype of cerebrovascular accident. SAH predominantly results from intracranial aneurysm ruptures and affects ∼30,000 individuals annually in the United States and ∼6 individuals per 100,000 people worldwide. Recent studies have implicated that administering mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be beneficial in inducing neuroprotective and antiinflammatory effects following SAH. EVs are nanosized particles bound by a lipid bilayer. MSC-EVs comprise a therapeutic cargo of nucleic acids, lipids, and proteins, having the promise to ease SAH-induced long-term brain impairments. This review evaluated the findings of published studies on the therapeutic efficacy of MSC-EVs in the context of SAH. A growing body of evidence points out the therapeutic potential of MSC-EVs for improving brain function in animal models of SAH. Specifically, studies demonstrated their ability to reduce neuronal apoptosis and neuroinflammation and enhance neurological recovery through neuroprotective and antiinflammatory mechanisms. Such outcomes reported in various studies suggest that MSC-EVs hold great potential as a novel and minimally invasive approach to ameliorate SAH-induced neurological damage and improve patient outcomes. The review also discusses the limitations of EV therapy and the required future research efforts toward harnessing the full potential of MSC-EVs in treating SAH.