Enhancing stability control of Phase-Locked loop in weak power grids

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Enhancing stability control of Phase-Locked loop in weak power grids","authors":"","doi":"10.1016/j.ijepes.2024.110145","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the factors affecting the stability of phase-locked loops (PLLs) in weak power grids. By establishing a PLL model in weak power grids, it is found that line impedance, grid frequency disturbances, and output power all have an impact on PLL stability. The influence of line impedance, grid frequency disturbances, and output power on PLL is analyzed using the phase plane method. Additionally, it is observed that increasing the PLL damping ratio can enhance PLL stability, but when the damping ratio exceeds the critical damping ratio, PLL instability may occur. Therefore, this paper divides the controllable range of PLL into two cases: damping ratio greater than the critical damping ratio and damping ratio less than the critical damping ratio. For the case where the damping ratio is less than the critical damping ratio, a transient virtual inductance control method is proposed to enhance the PLL damping ratio and improve PLL stability without introducing power coupling. For the case where the damping ratio is greater than the critical damping ratio, PLL adaptive parameter adjustment control is proposed to ensure that the PLL trajectory does not diverge by increasing the PLL adjustment time without increasing the damping ratio, thus improving VSC stability. Finally, a comparison with conventional methods is conducted, and the feasibility and correctness are analyzed through time-domain simulations, followed by presenting the result analysis.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524003661/pdfft?md5=b28533d33093b5f92f1e964010b8865a&pid=1-s2.0-S0142061524003661-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524003661","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the factors affecting the stability of phase-locked loops (PLLs) in weak power grids. By establishing a PLL model in weak power grids, it is found that line impedance, grid frequency disturbances, and output power all have an impact on PLL stability. The influence of line impedance, grid frequency disturbances, and output power on PLL is analyzed using the phase plane method. Additionally, it is observed that increasing the PLL damping ratio can enhance PLL stability, but when the damping ratio exceeds the critical damping ratio, PLL instability may occur. Therefore, this paper divides the controllable range of PLL into two cases: damping ratio greater than the critical damping ratio and damping ratio less than the critical damping ratio. For the case where the damping ratio is less than the critical damping ratio, a transient virtual inductance control method is proposed to enhance the PLL damping ratio and improve PLL stability without introducing power coupling. For the case where the damping ratio is greater than the critical damping ratio, PLL adaptive parameter adjustment control is proposed to ensure that the PLL trajectory does not diverge by increasing the PLL adjustment time without increasing the damping ratio, thus improving VSC stability. Finally, a comparison with conventional methods is conducted, and the feasibility and correctness are analyzed through time-domain simulations, followed by presenting the result analysis.

加强弱电网中锁相环的稳定性控制
本文分析了影响弱电网中锁相环(PLL)稳定性的因素。通过建立弱电网中的锁相环模型,发现线路阻抗、电网频率干扰和输出功率都会对锁相环的稳定性产生影响。利用相位平面法分析了线路阻抗、电网频率干扰和输出功率对 PLL 的影响。此外,还发现增加 PLL 阻尼比可以提高 PLL 的稳定性,但当阻尼比超过临界阻尼比时,可能会出现 PLL 不稳定。因此,本文将 PLL 的可控范围分为两种情况:阻尼比大于临界阻尼比和阻尼比小于临界阻尼比。对于阻尼比小于临界阻尼比的情况,本文提出了一种瞬态虚拟电感控制方法,在不引入功率耦合的情况下提高 PLL 的阻尼比,改善 PLL 的稳定性。对于阻尼比大于临界阻尼比的情况,提出了 PLL 自适应参数调整控制,在不增加阻尼比的情况下,通过增加 PLL 调整时间来确保 PLL 轨迹不发散,从而提高 VSC 稳定性。最后,与传统方法进行比较,通过时域仿真分析其可行性和正确性,并给出结果分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信