Detection of faulted phases in a medium-voltage main feeder using the cyber grid guard system with distributed ledger technology

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Detection of faulted phases in a medium-voltage main feeder using the cyber grid guard system with distributed ledger technology","authors":"","doi":"10.1016/j.ijepes.2024.110162","DOIUrl":null,"url":null,"abstract":"<div><p>Modern electrical grids have intelligent electronic devices (IEDs) such as protective relays that use internal logic to detect the types of electrical faults. The increasing integration of distributed energy sources and the resulting complexity of electrical grid communication architectures necessitates enhanced robustness of IEDs’ monitoring while maintaining security against potential cyber threats. In this study, a backup electrical faulted phase detection method with a distributed ledger technology (DLT) platform was implemented. Cyber Grid Guard software was developed to collect phase currents and voltages transmitted through IEC 61850 GOOSE messages, detect faulted phases from the IEDs using the GOOSE data, and validate the data by hashing them and storing them in the distributed ledger. In this way, the hashed data were run into an electrical faulted phase algorithm based on using a current threshold for detecting the faulted phases in the medium-voltage main feeder of an electrical substation. The detection of the electrical faulted phases was assessed in a real-time simulator with protective relays, meters, the software framework, and DLT in the loop. The proposed method provides secure and reliable backup detection external to the IEDs, and DLT validation enhances system security and trust.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524003831/pdfft?md5=d3655ed410268603ae97c6ccf6d03948&pid=1-s2.0-S0142061524003831-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524003831","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Modern electrical grids have intelligent electronic devices (IEDs) such as protective relays that use internal logic to detect the types of electrical faults. The increasing integration of distributed energy sources and the resulting complexity of electrical grid communication architectures necessitates enhanced robustness of IEDs’ monitoring while maintaining security against potential cyber threats. In this study, a backup electrical faulted phase detection method with a distributed ledger technology (DLT) platform was implemented. Cyber Grid Guard software was developed to collect phase currents and voltages transmitted through IEC 61850 GOOSE messages, detect faulted phases from the IEDs using the GOOSE data, and validate the data by hashing them and storing them in the distributed ledger. In this way, the hashed data were run into an electrical faulted phase algorithm based on using a current threshold for detecting the faulted phases in the medium-voltage main feeder of an electrical substation. The detection of the electrical faulted phases was assessed in a real-time simulator with protective relays, meters, the software framework, and DLT in the loop. The proposed method provides secure and reliable backup detection external to the IEDs, and DLT validation enhances system security and trust.

利用分布式账本技术的网络电网防护系统检测中压主馈线的故障相位
现代电网拥有智能电子设备 (IED),如利用内部逻辑检测电气故障类型的保护继电器。分布式能源的日益集成以及由此导致的电网通信架构的复杂性,要求增强 IED 监测的鲁棒性,同时保持安全以应对潜在的网络威胁。在这项研究中,利用分布式账本技术(DLT)平台实现了一种备用电力故障相位检测方法。开发的 Cyber Grid Guard 软件可收集通过 IEC 61850 GOOSE 报文传输的相电流和电压,使用 GOOSE 数据检测 IED 的故障相位,并通过散列验证数据并将其存储到分布式账本中。通过这种方式,散列数据被输入电气故障相位算法,该算法基于使用电流阈值来检测变电站中压主馈线中的故障相位。电气故障相位的检测在实时模拟器中进行了评估,模拟器中包括保护继电器、仪表、软件框架和环路中的 DLT。所提出的方法在 IED 外部提供了安全可靠的备份检测,而 DLT 验证增强了系统的安全性和可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信