Ke Chen , Bo Xiao , XueLian Liu , ChunYang Wang , ShuNing Liang
{"title":"Bidirectional long-short term memory predictor for material removal rate in computer-controlled optical surfacing","authors":"Ke Chen , Bo Xiao , XueLian Liu , ChunYang Wang , ShuNing Liang","doi":"10.1016/j.precisioneng.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>In Computer-Controlled Optical Surfacing technology, the precision of the removal function directly affects the accuracy of computer-aided processing software predictions, which in turn influences subsequent polishing machine processing. A key parameter for constructing the removal function is the material removal rate, which is often challenging to obtain accurately. Currently, the Preston equation is widely used to describe the principles of material removal. However, as a linear equation that omits many factors, it struggles to accurately model the removal function in complex machining scenarios. Therefore, this paper proposes a hybrid neural network model combining Convolutional Neural Networks and Bidirectional Long Short-Term Memory to predict the material removal rate. The model's parameters are optimized using an improved Grey Wolf Optimization algorithm, ultimately establishing a removal function closely consistent with an actual removal function. We first tested our method on the PHM2016 Data Challenge dataset, achieving a mean squared error of 6.19 and an R<sup>2</sup> of 0.9949, outperforming other mainstream neural network prediction models developed in recent years. Additionally, we further validated the performance of the neural network using a small grinding head polishing dataset, achieving MSE and R<sup>2</sup> values of 1.9035 and 0.99902, respectively. Finally, we applied this method to construct the removal function on an actual small grinding head production line. Compared to the traditional Preston equation-based removal function, the predicted residual surface's PV and RMS errors were reduced from 28.24 % to 35.58 %–4.563 % and 4.86 %, respectively. These validation results demonstrate that the proposed method not only facilitates easier acquisition of the removal function model but also significantly enhances the accuracy of computer-aided processing software predictions, thereby better guiding ultra-precision machining processes.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"89 ","pages":"Pages 473-491"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924001582","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In Computer-Controlled Optical Surfacing technology, the precision of the removal function directly affects the accuracy of computer-aided processing software predictions, which in turn influences subsequent polishing machine processing. A key parameter for constructing the removal function is the material removal rate, which is often challenging to obtain accurately. Currently, the Preston equation is widely used to describe the principles of material removal. However, as a linear equation that omits many factors, it struggles to accurately model the removal function in complex machining scenarios. Therefore, this paper proposes a hybrid neural network model combining Convolutional Neural Networks and Bidirectional Long Short-Term Memory to predict the material removal rate. The model's parameters are optimized using an improved Grey Wolf Optimization algorithm, ultimately establishing a removal function closely consistent with an actual removal function. We first tested our method on the PHM2016 Data Challenge dataset, achieving a mean squared error of 6.19 and an R2 of 0.9949, outperforming other mainstream neural network prediction models developed in recent years. Additionally, we further validated the performance of the neural network using a small grinding head polishing dataset, achieving MSE and R2 values of 1.9035 and 0.99902, respectively. Finally, we applied this method to construct the removal function on an actual small grinding head production line. Compared to the traditional Preston equation-based removal function, the predicted residual surface's PV and RMS errors were reduced from 28.24 % to 35.58 %–4.563 % and 4.86 %, respectively. These validation results demonstrate that the proposed method not only facilitates easier acquisition of the removal function model but also significantly enhances the accuracy of computer-aided processing software predictions, thereby better guiding ultra-precision machining processes.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.