Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene

Q3 Energy
Jucai WANG, Ke TANG, Xiaodi SUN, Xin HONG
{"title":"Theoretical calculations of pyridine adsorption on the surfaces of Ti, Zr, N doped graphene","authors":"Jucai WANG,&nbsp;Ke TANG,&nbsp;Xiaodi SUN,&nbsp;Xin HONG","doi":"10.1016/S1872-5813(24)60440-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the adsorption behavior of pyridine, a typical basic nitrogen compound in diesel oil, on Ti-doped, Zr-doped, N-doped and intrinsic graphene has been investigated by density functional methods. The corresponding adsorption energy, adsorption configurations, Mulliken charge transfer, differential charge density and density of states were discussed. The results show that doping graphene with metal atoms such as Ti or Zr can significantly obviously enhance the adsorption energy between pyridine and graphene surfaces, while non-metal N doping has a relatively minor effect. The magnitude of the adsorption energy of pyridine on the surfaces of graphene modified with different atoms follows the order: Ti-doped&gt;Zr-doped&gt;N-doped&gt;intrinsic graphene. Pyridine interacts with Ti- or Zr-doped graphene through N−Ti, N−Zr and π−π interactions, while with N-doped and intrinsic graphene, it interacts via N−N, C−N and π−π interactions. There are significantelectron transfer and chemical bond formation between pyridine and metal-doped (Ti, Zr) graphene surfaces, indicating chemical adsorption. However, there is no chemical bond formation with non-metal N-doped graphene and intrinsic graphene, suggesting physical adsorption in these cases. Overall, pyridine exhibits more stable adsorption on the surfaces of Ti, Zr-doped graphene.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 8","pages":"Pages 1162-1172"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the adsorption behavior of pyridine, a typical basic nitrogen compound in diesel oil, on Ti-doped, Zr-doped, N-doped and intrinsic graphene has been investigated by density functional methods. The corresponding adsorption energy, adsorption configurations, Mulliken charge transfer, differential charge density and density of states were discussed. The results show that doping graphene with metal atoms such as Ti or Zr can significantly obviously enhance the adsorption energy between pyridine and graphene surfaces, while non-metal N doping has a relatively minor effect. The magnitude of the adsorption energy of pyridine on the surfaces of graphene modified with different atoms follows the order: Ti-doped>Zr-doped>N-doped>intrinsic graphene. Pyridine interacts with Ti- or Zr-doped graphene through N−Ti, N−Zr and π−π interactions, while with N-doped and intrinsic graphene, it interacts via N−N, C−N and π−π interactions. There are significantelectron transfer and chemical bond formation between pyridine and metal-doped (Ti, Zr) graphene surfaces, indicating chemical adsorption. However, there is no chemical bond formation with non-metal N-doped graphene and intrinsic graphene, suggesting physical adsorption in these cases. Overall, pyridine exhibits more stable adsorption on the surfaces of Ti, Zr-doped graphene.

掺杂 Ti、Zr 和 N 的石墨烯表面吡啶吸附的理论计算
本文采用密度泛函方法研究了柴油中典型的碱性氮化合物吡啶在掺钛石墨烯、掺锆石墨烯、掺氮石墨烯和本征石墨烯上的吸附行为。讨论了相应的吸附能、吸附构型、Mulliken 电荷转移、电荷差密度和状态密度。结果表明,在石墨烯中掺杂金属原子(如 Ti 或 Zr)能显著提高吡啶与石墨烯表面的吸附能,而非金属 N 掺杂的影响相对较小。吡啶在不同原子修饰的石墨烯表面的吸附能大小依次为钛掺杂>锆掺杂>N掺杂>本征石墨烯。吡啶与掺 Ti- 或 Zr 的石墨烯通过 N-Ti、N-Zr 和 π-π 相互作用,而与掺 N 和本征石墨烯则通过 N-N、C-N 和 π-π 相互作用。吡啶与掺杂金属(Ti、Zr)的石墨烯表面之间有明显的电子转移和化学键形成,表明存在化学吸附。然而,吡啶与非金属 N 掺杂石墨烯和本征石墨烯之间没有形成化学键,表明在这些情况下存在物理吸附。总体而言,吡啶在掺杂 Ti、Zr 的石墨烯表面上的吸附更为稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信