Advancing battery state of charge estimation in electric vehicles through deep learning: A comprehensive study using real-world driving data

Mohd Herwan Sulaiman , Zuriani Mustaffa , Saifudin Razali , Mohd Razali Daud
{"title":"Advancing battery state of charge estimation in electric vehicles through deep learning: A comprehensive study using real-world driving data","authors":"Mohd Herwan Sulaiman ,&nbsp;Zuriani Mustaffa ,&nbsp;Saifudin Razali ,&nbsp;Mohd Razali Daud","doi":"10.1016/j.cles.2024.100131","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately estimating the State of Charge (SOC) in Electric Vehicles (EVs) is critical for battery management and operational efficiency. This paper presents a Deep Learning (DL) approach to address this challenge, utilizing Feed-Forward Neural Networks (FFNN) to estimate SOC in real-world EV scenarios. The research used data from 70 driving sessions with a BMW i3 EV. Each session recorded key factors like voltage, current, and temperature, providing inputs for the DL model. The recorded SOC values served as outputs. We divided the dataset into training, validation, and testing subsets to develop and evaluate the FFNN model. The results demonstrate that the FFNN model yields minimal errors and significantly improves SOC estimation accuracy. Our comparative analysis with other machine learning techniques shows that FFNN outperforms them, with an approximately 2.87 % lower root mean square error (RMSE) compared to the second-best method, Extreme Learning Machine (ELM). This work has significant implications for electric vehicle battery management, demonstrating that deep learning methods can enhance SOC estimation, thereby improving the efficiency and reliability of EV operations.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000256/pdfft?md5=7448e81d1f5c13869ef75b0f12b0f078&pid=1-s2.0-S2772783124000256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately estimating the State of Charge (SOC) in Electric Vehicles (EVs) is critical for battery management and operational efficiency. This paper presents a Deep Learning (DL) approach to address this challenge, utilizing Feed-Forward Neural Networks (FFNN) to estimate SOC in real-world EV scenarios. The research used data from 70 driving sessions with a BMW i3 EV. Each session recorded key factors like voltage, current, and temperature, providing inputs for the DL model. The recorded SOC values served as outputs. We divided the dataset into training, validation, and testing subsets to develop and evaluate the FFNN model. The results demonstrate that the FFNN model yields minimal errors and significantly improves SOC estimation accuracy. Our comparative analysis with other machine learning techniques shows that FFNN outperforms them, with an approximately 2.87 % lower root mean square error (RMSE) compared to the second-best method, Extreme Learning Machine (ELM). This work has significant implications for electric vehicle battery management, demonstrating that deep learning methods can enhance SOC estimation, thereby improving the efficiency and reliability of EV operations.

Abstract Image

通过深度学习推进电动汽车电池充电状态估算:使用真实世界驾驶数据的综合研究
准确估计电动汽车(EV)的充电状态(SOC)对于电池管理和运行效率至关重要。本文提出了一种深度学习(DL)方法来应对这一挑战,利用前馈神经网络(FFNN)来估计真实电动汽车场景中的 SOC。研究使用了宝马 i3 电动汽车 70 次驾驶的数据。每次驾驶都记录了电压、电流和温度等关键因素,为 DL 模型提供输入。记录的 SOC 值作为输出。我们将数据集分为训练、验证和测试子集,以开发和评估 FFNN 模型。结果表明,FFNN 模型产生的误差最小,并显著提高了 SOC 估算的准确性。我们与其他机器学习技术的比较分析表明,FFNN 的表现优于其他机器学习技术,其均方根误差 (RMSE) 比排名第二的极限学习机 (ELM) 低约 2.87%。这项工作对电动汽车电池管理具有重要意义,证明了深度学习方法可以增强 SOC 估算,从而提高电动汽车运行的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信