Robbie Holland MEng , Rebecca Kaye MD , Ahmed M. Hagag MD , Oliver Leingang PhD , Thomas R.P. Taylor MD , Hrvoje Bogunović PhD , Ursula Schmidt-Erfurth MD , Hendrik P.N. Scholl MD , Daniel Rueckert PhD , Andrew J. Lotery MD , Sobha Sivaprasad MD , Martin J. Menten PhD
{"title":"Deep Learning–Based Clustering of OCT Images for Biomarker Discovery in Age-Related Macular Degeneration (PINNACLE Study Report 4)","authors":"Robbie Holland MEng , Rebecca Kaye MD , Ahmed M. Hagag MD , Oliver Leingang PhD , Thomas R.P. Taylor MD , Hrvoje Bogunović PhD , Ursula Schmidt-Erfurth MD , Hendrik P.N. Scholl MD , Daniel Rueckert PhD , Andrew J. Lotery MD , Sobha Sivaprasad MD , Martin J. Menten PhD","doi":"10.1016/j.xops.2024.100543","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>We introduce a deep learning–based biomarker proposal system for the purpose of accelerating biomarker discovery in age-related macular degeneration (AMD).</p></div><div><h3>Design</h3><p>Retrospective analysis of a large data set of retinal OCT images.</p></div><div><h3>Participants</h3><p>A total of 3456 adults aged between 51 and 102 years whose OCT images were collected under the PINNACLE project.</p></div><div><h3>Methods</h3><p>Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first training a neural network using self-supervised contrastive learning to discover, without any clinical annotations, features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially inform new biomarker candidates.</p></div><div><h3>Main Outcome Measures</h3><p>We checked if each cluster showed clear features comprehensible to retinal specialists, if they related to AMD, and how many described established biomarkers used in grading systems as opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-stage wet and dry AMD against an established clinical grading system and a demographic baseline model.</p></div><div><h3>Results</h3><p>Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading systems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intraretinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading systems in prognostic value.</p></div><div><h3>Conclusions</h3><p>Using self-supervised deep learning, we were able to automatically propose AMD biomarkers going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic biomarkers.</p></div><div><h3>Financial Disclosure(s)</h3><p>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</p></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"4 6","pages":"Article 100543"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666914524000794/pdfft?md5=871d81d60ba0cb5d1ab13c6991aa394a&pid=1-s2.0-S2666914524000794-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914524000794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
We introduce a deep learning–based biomarker proposal system for the purpose of accelerating biomarker discovery in age-related macular degeneration (AMD).
Design
Retrospective analysis of a large data set of retinal OCT images.
Participants
A total of 3456 adults aged between 51 and 102 years whose OCT images were collected under the PINNACLE project.
Methods
Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first training a neural network using self-supervised contrastive learning to discover, without any clinical annotations, features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially inform new biomarker candidates.
Main Outcome Measures
We checked if each cluster showed clear features comprehensible to retinal specialists, if they related to AMD, and how many described established biomarkers used in grading systems as opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-stage wet and dry AMD against an established clinical grading system and a demographic baseline model.
Results
Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading systems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intraretinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading systems in prognostic value.
Conclusions
Using self-supervised deep learning, we were able to automatically propose AMD biomarkers going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic biomarkers.
Financial Disclosure(s)
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.