Oscar Kremer, Igor Califrer, Daniel Tandeitnik, Jean Pierre von der Weid, Guilherme Temporão, Thiago Guerreiro
{"title":"All-electrical cooling of an optically levitated nanoparticle","authors":"Oscar Kremer, Igor Califrer, Daniel Tandeitnik, Jean Pierre von der Weid, Guilherme Temporão, Thiago Guerreiro","doi":"10.1103/physrevapplied.22.024010","DOIUrl":null,"url":null,"abstract":"We implement an all-electrical controller for 3D feedback cooling of an optically levitated nanoparticle capable of reaching subkelvin temperatures for the center-of-mass motion. The controller is based on an optimal policy in which state estimation is made by delayed position measurements. The method offers a simplified path for precooling and decoupling the transverse degrees of freedom of the nanoparticle. Numerical simulations show that in an improved setup with quantum limited detection, all three axes can be cooled down to a few-phonon regime.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"41 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024010","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We implement an all-electrical controller for 3D feedback cooling of an optically levitated nanoparticle capable of reaching subkelvin temperatures for the center-of-mass motion. The controller is based on an optimal policy in which state estimation is made by delayed position measurements. The method offers a simplified path for precooling and decoupling the transverse degrees of freedom of the nanoparticle. Numerical simulations show that in an improved setup with quantum limited detection, all three axes can be cooled down to a few-phonon regime.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.