{"title":"Ceria‑iron electrocatalysts for ammonia electrosynthesis using protonic ceramic electrolysis cells","authors":"Moe Okazaki , Junichiro Otomo","doi":"10.1016/j.ssi.2024.116649","DOIUrl":null,"url":null,"abstract":"<div><p>Iron has proven to be a simple yet high-performing electrode for ammonia electrosynthesis, particularly when used with protonic ceramic electrolysis cells. On a proton-conducting BaCe<sub>0.9</sub>Y<sub>0.1</sub>O<sub>3−δ</sub> (BCY) electrolyte, iron oxide forms an interfacial layer during sintering due to solid-state cation diffusion. In this work, we found that the ceria‑iron layer that is formed in-situ both enables electrode adhesion and is active for ammonia electrosynthesis. Cells with electrodes fabricated from CeO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> at a weight ratio of 1:1 (CeFe11) and 6:1 (CeFe61), designed to replicate the composition of the interfacial layer, resulted in ammonia formation rates similar to those of cells with pure Fe electrodes, reaching 1.1–1.2 × 10<sup>−8</sup> mol s<sup>−1</sup> cm<sup>−2</sup> at an applied voltage of −1 V at 600 °C. The ceria‑iron catalysts exhibited higher catalytic activity and a moderate electrochemical activity. A comparison of these electrodes suggests that the regions where ceria and iron are in proximity are the most active for ammonia electrosynthesis. Furthermore, CeFe11 demonstrates similar ammonia formation rates on BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3−δ</sub> (BZCYYb1711) as on BCY; as BZCYYb is more stable than BCY in the presence of water vapor, the development of ceria‑iron electrodes could widen the application of iron-based electrodes to ammonia electrosynthesis combined with water electrolysis.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116649"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001978","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Iron has proven to be a simple yet high-performing electrode for ammonia electrosynthesis, particularly when used with protonic ceramic electrolysis cells. On a proton-conducting BaCe0.9Y0.1O3−δ (BCY) electrolyte, iron oxide forms an interfacial layer during sintering due to solid-state cation diffusion. In this work, we found that the ceria‑iron layer that is formed in-situ both enables electrode adhesion and is active for ammonia electrosynthesis. Cells with electrodes fabricated from CeO2-Fe2O3 at a weight ratio of 1:1 (CeFe11) and 6:1 (CeFe61), designed to replicate the composition of the interfacial layer, resulted in ammonia formation rates similar to those of cells with pure Fe electrodes, reaching 1.1–1.2 × 10−8 mol s−1 cm−2 at an applied voltage of −1 V at 600 °C. The ceria‑iron catalysts exhibited higher catalytic activity and a moderate electrochemical activity. A comparison of these electrodes suggests that the regions where ceria and iron are in proximity are the most active for ammonia electrosynthesis. Furthermore, CeFe11 demonstrates similar ammonia formation rates on BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb1711) as on BCY; as BZCYYb is more stable than BCY in the presence of water vapor, the development of ceria‑iron electrodes could widen the application of iron-based electrodes to ammonia electrosynthesis combined with water electrolysis.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.