Fernando Albiac , José L. Ansorena , Miguel Berasategui
{"title":"Linear versus nonlinear forms of partial unconditionality of bases","authors":"Fernando Albiac , José L. Ansorena , Miguel Berasategui","doi":"10.1016/j.jfa.2024.110594","DOIUrl":null,"url":null,"abstract":"<div><p>The main results in this paper contribute to bringing to the fore novel underlying connections between the contemporary concepts and methods springing from greedy approximation theory with the well-established techniques of classical Banach spaces. We do that by showing that bounded-oscillation unconditional bases, introduced by Dilworth et al. in 2009 in the setting of their search for extraction principles of subsequences verifying partial forms of unconditionality, are the same as truncation quasi-greedy bases, a new breed of bases that appear naturally in the study of the performance of the thresholding greedy algorithm in Banach spaces. We use this identification to provide examples of bases that exhibit that bounded-oscillation unconditionality is a stronger condition than Elton's near unconditionality. We also take advantage of our arguments to provide examples that allow us to tell apart certain types of bases that verify either debilitated unconditionality conditions or weaker forms of quasi-greediness in the context of abstract approximation theory.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002829/pdfft?md5=d1eaf1259e1f6e43185ebe7056350763&pid=1-s2.0-S0022123624002829-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002829","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main results in this paper contribute to bringing to the fore novel underlying connections between the contemporary concepts and methods springing from greedy approximation theory with the well-established techniques of classical Banach spaces. We do that by showing that bounded-oscillation unconditional bases, introduced by Dilworth et al. in 2009 in the setting of their search for extraction principles of subsequences verifying partial forms of unconditionality, are the same as truncation quasi-greedy bases, a new breed of bases that appear naturally in the study of the performance of the thresholding greedy algorithm in Banach spaces. We use this identification to provide examples of bases that exhibit that bounded-oscillation unconditionality is a stronger condition than Elton's near unconditionality. We also take advantage of our arguments to provide examples that allow us to tell apart certain types of bases that verify either debilitated unconditionality conditions or weaker forms of quasi-greediness in the context of abstract approximation theory.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis