On the asymptotic behaviour of the fractional Sobolev seminorms: A geometric approach

IF 1.7 2区 数学 Q1 MATHEMATICS
Bang-Xian Han
{"title":"On the asymptotic behaviour of the fractional Sobolev seminorms: A geometric approach","authors":"Bang-Xian Han","doi":"10.1016/j.jfa.2024.110608","DOIUrl":null,"url":null,"abstract":"<div><p>We study the well-known asymptotic formulas for fractional Sobolev functions à la Bourgain–Brezis–Mironescu and Maz'ya–Shaposhnikova, in a geometric approach. We show that the key to these asymptotic formulas are Rademacher's theorem and volume growth at infinity respectively. Examples fitting our framework includes Euclidean spaces, Riemannian manifolds, Alexandrov spaces, finite dimensional Banach spaces, and some ideal sub-Riemannian manifolds.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002969","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the well-known asymptotic formulas for fractional Sobolev functions à la Bourgain–Brezis–Mironescu and Maz'ya–Shaposhnikova, in a geometric approach. We show that the key to these asymptotic formulas are Rademacher's theorem and volume growth at infinity respectively. Examples fitting our framework includes Euclidean spaces, Riemannian manifolds, Alexandrov spaces, finite dimensional Banach spaces, and some ideal sub-Riemannian manifolds.

关于分数索波列弗半矩阵的渐近行为:几何方法
我们用几何方法研究了著名的布尔干-布雷齐斯-米罗内斯库(Bourgain-Brezis-Mironescu)和马兹亚-沙波什尼科娃(Maz'ya-Shaposhnikova)分式索波列函数渐近公式。我们证明,这些渐近公式的关键分别是拉德马赫定理和无穷大时的体积增长。适合我们框架的例子包括欧几里得空间、黎曼流形、亚历山德罗夫空间、有限维巴拿赫空间和一些理想子黎曼流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信