Non-self-adjoint quasi-periodic operators with complex spectrum

IF 1.7 2区 数学 Q1 MATHEMATICS
Zhenfu Wang, Jiangong You, Qi Zhou
{"title":"Non-self-adjoint quasi-periodic operators with complex spectrum","authors":"Zhenfu Wang,&nbsp;Jiangong You,&nbsp;Qi Zhou","doi":"10.1016/j.jfa.2024.110614","DOIUrl":null,"url":null,"abstract":"<div><p>We give a precise and complete description on the spectrum for a class of non-self-adjoint quasi-periodic operators acting on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> which contains the Sarnak's model as a special case. As a consequence, one can see various interesting spectral phenomena including <span><math><mi>P</mi><mi>T</mi></math></span> symmetric breaking, the non-simply-connected two-dimensional spectrum in this class of operators. Particularly, we provide new examples of non-self-adjoint operator in <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> whose spectra (actually a two-dimensional subset of <span><math><mi>C</mi></math></span>) can not be approximated by the spectra of its finite-interval truncations.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003021","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a precise and complete description on the spectrum for a class of non-self-adjoint quasi-periodic operators acting on 2(Zd) which contains the Sarnak's model as a special case. As a consequence, one can see various interesting spectral phenomena including PT symmetric breaking, the non-simply-connected two-dimensional spectrum in this class of operators. Particularly, we provide new examples of non-self-adjoint operator in 2(Z) whose spectra (actually a two-dimensional subset of C) can not be approximated by the spectra of its finite-interval truncations.

具有复频谱的非自交准周期算子
我们对一类非自相加准周期算子的频谱给出了精确而完整的描述,该类算子包含作为特例的萨尔纳克模型。因此,我们可以在这一类算子中看到各种有趣的谱现象,包括对称破缺、非简单连接的二维谱。特别是,我们提供了非自交算子的新例子,这些算子的谱(实际上是二维子集)不能用其有限区间截断的谱来近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信