Yuanming Hou , Xiaocheng Song , Yanqing Zhang , Tingting Ren , Jiaxin Wang , Jingyi Qin , Jianjun Yang , Zhengzheng Xie , Zhihong Tian , Zhongjie Guan , Xianwei Fu , Shilong Jiao , Qiuye Li , Erling Li
{"title":"0D/2D Schottky heterojunction of CsPbBr3 nanocrystals on MoN nanosheets for enhancing charge transfer and CO2 photoreduction","authors":"Yuanming Hou , Xiaocheng Song , Yanqing Zhang , Tingting Ren , Jiaxin Wang , Jingyi Qin , Jianjun Yang , Zhengzheng Xie , Zhihong Tian , Zhongjie Guan , Xianwei Fu , Shilong Jiao , Qiuye Li , Erling Li","doi":"10.1016/j.flatc.2024.100720","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven conversion of CO<sub>2</sub> to value-added chemical fuels has been regarded as a promising strategy for solving the climate problem and energy crisis. To realize this goal, it is vital to design photocatalysts with abundant catalytic active sites and excellent charge separation efficiency. Here, perovskite nanocrystals (CsPbBr<sub>3</sub>) were anchored on two-dimensional molybdenum nitride (MoN) using an in-situ growth method, forming a new and effective 0D/2D CsPbBr<sub>3</sub>@MoN (CPB@MoN) nanoheterosturcture with close contact interface for CO<sub>2</sub> photoreduction. The introduction of MoN, acting as a charge transfer channel, could quickly trap the photoinduced charge from CsPbBr<sub>3</sub> and provide abundant catalytic sites for CO<sub>2</sub> photocatalytic reactions. For optimized CsPbBr<sub>3</sub>@MoN composites, the CO yield was 13.86μmol/gh<sup>−1</sup> without any sacrificial reagent, which was a 4.5-fold enhancement of the pure CsPbBr<sub>3</sub>. Further, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed the catalytic mechanism for the CO<sub>2</sub> photoreduction process. This work provides a new platform for constructing superior perovskite/MoN-based photocatalysts for photocatalytic CO<sub>2</sub> reduction.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100720"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001144","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven conversion of CO2 to value-added chemical fuels has been regarded as a promising strategy for solving the climate problem and energy crisis. To realize this goal, it is vital to design photocatalysts with abundant catalytic active sites and excellent charge separation efficiency. Here, perovskite nanocrystals (CsPbBr3) were anchored on two-dimensional molybdenum nitride (MoN) using an in-situ growth method, forming a new and effective 0D/2D CsPbBr3@MoN (CPB@MoN) nanoheterosturcture with close contact interface for CO2 photoreduction. The introduction of MoN, acting as a charge transfer channel, could quickly trap the photoinduced charge from CsPbBr3 and provide abundant catalytic sites for CO2 photocatalytic reactions. For optimized CsPbBr3@MoN composites, the CO yield was 13.86μmol/gh−1 without any sacrificial reagent, which was a 4.5-fold enhancement of the pure CsPbBr3. Further, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed the catalytic mechanism for the CO2 photoreduction process. This work provides a new platform for constructing superior perovskite/MoN-based photocatalysts for photocatalytic CO2 reduction.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)