{"title":"Classes of probability measures built on the properties of Benford’s law","authors":"Roy Cerqueti, Mario Maggi","doi":"10.1007/s10182-024-00505-2","DOIUrl":null,"url":null,"abstract":"<p>Benford’s law is a particular discrete probability distribution that is often satisfied by the significant digits of a dataset. The nonconformity with Benford’s law suggests the possible presence of data manipulation. This paper introduces two novel generalized versions of Benford’s law that are less restrictive than the original Benford’s law—hence, leading to more probable conformity of a given dataset. Such generalizations are grounded on the existing mathematical relations between Benford’s law probability distribution elements. Moreover, one of them leads to a set of probability distributions that is a proper subset of that of the other one. We show that the considered versions of Benford’s law have a geometric representation on the three-dimensional Euclidean space. Through suitable optimization models, we show that all the probability distributions satisfying the more restrictive generalization exhibit at least acceptable conformity with Benford’s law, according to the most popular distance measures. We also present some examples to highlight the practical usefulness of the introduced devices.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00505-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Benford’s law is a particular discrete probability distribution that is often satisfied by the significant digits of a dataset. The nonconformity with Benford’s law suggests the possible presence of data manipulation. This paper introduces two novel generalized versions of Benford’s law that are less restrictive than the original Benford’s law—hence, leading to more probable conformity of a given dataset. Such generalizations are grounded on the existing mathematical relations between Benford’s law probability distribution elements. Moreover, one of them leads to a set of probability distributions that is a proper subset of that of the other one. We show that the considered versions of Benford’s law have a geometric representation on the three-dimensional Euclidean space. Through suitable optimization models, we show that all the probability distributions satisfying the more restrictive generalization exhibit at least acceptable conformity with Benford’s law, according to the most popular distance measures. We also present some examples to highlight the practical usefulness of the introduced devices.
期刊介绍:
AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.