The potential of human leukocyte antigen alleles to assist with multiple-contributor DNA mixtures: Proof of concept study

IF 1.9 4区 医学 Q2 MEDICINE, LEGAL
{"title":"The potential of human leukocyte antigen alleles to assist with multiple-contributor DNA mixtures: Proof of concept study","authors":"","doi":"10.1016/j.scijus.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most challenging issues still present in forensic DNA analysis is identifying individuals in samples containing DNA from multiple contributors. The introduction of novel identification markers may be a useful tool in the deconvolution of such DNA mixtures. In this study, we investigated the potential of alleles from the human leukocyte antigen system (HLA) to aid in identifying individuals in complex, multiple-donor DNA samples. The most advantageous characteristic of the HLA complex is its polymorphism in the human genome. A 22-loci multiplex with HLA markers was designed and applied to two-, three-, and four-person DNA mixtures. The results of the conducted experiments demonstrated that the identification of individuals in multiple contributor samples with the help of HLA markers is possible; however, it is clear that the reliability of the method is heavily dependent on the number of unique alleles for each individual in the analysed mixture. In order to compare this novel approach against the already established process, the same group of reference and multiple-contributor samples was analysed with a commonly used set of STR markers. This proof-of-concept research shows the importance of examining alternative solutions to the current deconvolution challenge in forensic DNA profiling.</p></div>","PeriodicalId":49565,"journal":{"name":"Science & Justice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355030624000753/pdfft?md5=5680850d0321b890931b26ea1ea0c4c7&pid=1-s2.0-S1355030624000753-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Justice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355030624000753","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most challenging issues still present in forensic DNA analysis is identifying individuals in samples containing DNA from multiple contributors. The introduction of novel identification markers may be a useful tool in the deconvolution of such DNA mixtures. In this study, we investigated the potential of alleles from the human leukocyte antigen system (HLA) to aid in identifying individuals in complex, multiple-donor DNA samples. The most advantageous characteristic of the HLA complex is its polymorphism in the human genome. A 22-loci multiplex with HLA markers was designed and applied to two-, three-, and four-person DNA mixtures. The results of the conducted experiments demonstrated that the identification of individuals in multiple contributor samples with the help of HLA markers is possible; however, it is clear that the reliability of the method is heavily dependent on the number of unique alleles for each individual in the analysed mixture. In order to compare this novel approach against the already established process, the same group of reference and multiple-contributor samples was analysed with a commonly used set of STR markers. This proof-of-concept research shows the importance of examining alternative solutions to the current deconvolution challenge in forensic DNA profiling.

人类白细胞抗原等位基因协助处理多贡献DNA混合物的潜力:概念验证研究
法医 DNA 分析中仍然存在的最具挑战性的问题之一,是在含有来自多个贡献者的 DNA 的样本中识别个体。引入新的识别标记可能是解构此类 DNA 混合物的有用工具。在这项研究中,我们调查了人类白细胞抗原系统(HLA)等位基因在帮助识别复杂的多供体 DNA 样本中的个体方面的潜力。HLA 复合物的最大优势在于其在人类基因组中的多态性。研究人员设计了一种含有 HLA 标记的 22 个基因组复合物,并将其应用于两人、三人和四人 DNA 混合物中。实验结果表明,在 HLA 标记的帮助下,可以对多个贡献者样本中的个体进行识别;不过,该方法的可靠性显然在很大程度上取决于分析混合物中每个个体的独特等位基因数量。为了将这种新方法与已建立的流程进行比较,我们使用一组常用的 STR 标记对同一组参考样本和多贡献者样本进行了分析。这项概念验证研究表明,在法医 DNA 图谱分析中,研究其他解决方案来应对当前的解卷积挑战非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science & Justice
Science & Justice 医学-病理学
CiteScore
4.20
自引率
15.80%
发文量
98
审稿时长
81 days
期刊介绍: Science & Justice provides a forum to promote communication and publication of original articles, reviews and correspondence on subjects that spark debates within the Forensic Science Community and the criminal justice sector. The journal provides a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. Science & Justice is published six times a year, and will be of interest primarily to practising forensic scientists and their colleagues in related fields. It is chiefly concerned with the publication of formal scientific papers, in keeping with its international learned status, but will not accept any article describing experimentation on animals which does not meet strict ethical standards. Promote communication and informed debate within the Forensic Science Community and the criminal justice sector. To promote the publication of learned and original research findings from all areas of the forensic sciences and by so doing to advance the profession. To promote the publication of case based material by way of case reviews. To promote the publication of conference proceedings which are of interest to the forensic science community. To provide a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. To appeal to all those with an interest in the forensic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信