The effect of products containing high concentration corrosive substances on the recovery of fingermarks from non-porous surfaces

IF 1.9 4区 医学 Q2 MEDICINE, LEGAL
{"title":"The effect of products containing high concentration corrosive substances on the recovery of fingermarks from non-porous surfaces","authors":"","doi":"10.1016/j.scijus.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Fingermark recovery plays a crucial role in investigating corrosive substance attacks, which are becoming increasingly common. Building upon previous research, this study aimed to identify effective visualization processes for recovering fingermarks from diverse substrates exposed to wide range of commercially available corrosive materials. The study investigated glass, PVC and HDPE substrates with fingermarks deposited 1 day and 2 weeks before exposure to the corrosive substance, and used commercially available substances at concentrations higher than any previous study. It was found that fingermarks could still be recovered from all substrates studied after exposure to most of the corrosive substances, although in general exposure to corrosive substances was detrimental to the quality of marks recovered. The most detrimental corrosive substances were found to be those based on concentrated sulfuric acid. Black and white powder suspensions were the most effective of all processes used in this study, with the highest recovery rates observed from the glass substrate. Age of mark was not found to have a significant effect on recovery rates. Overall the results show that fingermarks may survive exposure to even the most concentrated acids used in this study and provide the initial basis for guidance on processes that could be used on materials used in corrosive substance attacks.</p></div>","PeriodicalId":49565,"journal":{"name":"Science & Justice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355030624000777/pdfft?md5=a76b862ddd557247d336665a29c6715b&pid=1-s2.0-S1355030624000777-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Justice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355030624000777","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fingermark recovery plays a crucial role in investigating corrosive substance attacks, which are becoming increasingly common. Building upon previous research, this study aimed to identify effective visualization processes for recovering fingermarks from diverse substrates exposed to wide range of commercially available corrosive materials. The study investigated glass, PVC and HDPE substrates with fingermarks deposited 1 day and 2 weeks before exposure to the corrosive substance, and used commercially available substances at concentrations higher than any previous study. It was found that fingermarks could still be recovered from all substrates studied after exposure to most of the corrosive substances, although in general exposure to corrosive substances was detrimental to the quality of marks recovered. The most detrimental corrosive substances were found to be those based on concentrated sulfuric acid. Black and white powder suspensions were the most effective of all processes used in this study, with the highest recovery rates observed from the glass substrate. Age of mark was not found to have a significant effect on recovery rates. Overall the results show that fingermarks may survive exposure to even the most concentrated acids used in this study and provide the initial basis for guidance on processes that could be used on materials used in corrosive substance attacks.

Abstract Image

含有高浓度腐蚀性物质的产品对从无孔表面恢复指痕的影响
在调查日益普遍的腐蚀性物质侵蚀过程中,指痕复原起着至关重要的作用。在以往研究的基础上,本研究旨在确定有效的可视化流程,以便从暴露于各种市售腐蚀性材料的不同基底中恢复指痕。该研究调查了玻璃、聚氯乙烯和高密度聚乙烯基底上在暴露于腐蚀性物质前 1 天和 2 周沉积的指痕,并使用了浓度高于以往任何研究的市售物质。研究发现,在暴露于大多数腐蚀性物质后,仍然可以从所有研究的基底上复原指痕,但一般来说,暴露于腐蚀性物质会对复原指痕的质量造成损害。最有害的腐蚀性物质是以浓硫酸为基础的物质。在本研究使用的所有工艺中,黑白粉末悬浮液最有效,从玻璃基底上观察到的回收率最高。标记的年龄对回收率的影响不大。总之,研究结果表明,即使是在本研究中使用的浓度最高的酸中,指痕也能存活下来,这为指导在腐蚀性物质侵蚀中使用的材料的处理工艺提供了初步依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science & Justice
Science & Justice 医学-病理学
CiteScore
4.20
自引率
15.80%
发文量
98
审稿时长
81 days
期刊介绍: Science & Justice provides a forum to promote communication and publication of original articles, reviews and correspondence on subjects that spark debates within the Forensic Science Community and the criminal justice sector. The journal provides a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. Science & Justice is published six times a year, and will be of interest primarily to practising forensic scientists and their colleagues in related fields. It is chiefly concerned with the publication of formal scientific papers, in keeping with its international learned status, but will not accept any article describing experimentation on animals which does not meet strict ethical standards. Promote communication and informed debate within the Forensic Science Community and the criminal justice sector. To promote the publication of learned and original research findings from all areas of the forensic sciences and by so doing to advance the profession. To promote the publication of case based material by way of case reviews. To promote the publication of conference proceedings which are of interest to the forensic science community. To provide a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. To appeal to all those with an interest in the forensic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信