Origin of the 30–60-day intraseasonal oscillation of streamflow in source region of Yellow River in China: a perspective of the atmospheric signals from mid-high latitude

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Lun Li, Congwen Zhu, Xiangde Xu, Ziyan Zheng, Shuangmei Ma, Wanyi Sun
{"title":"Origin of the 30–60-day intraseasonal oscillation of streamflow in source region of Yellow River in China: a perspective of the atmospheric signals from mid-high latitude","authors":"Lun Li, Congwen Zhu, Xiangde Xu, Ziyan Zheng, Shuangmei Ma, Wanyi Sun","doi":"10.1186/s40562-024-00348-4","DOIUrl":null,"url":null,"abstract":"Streamflow in source region of Yellow River (SRYR) matters with regard to the adjacent and downstream water resources. Intraseasonal oscillation (ISO) in the streamflow in SRYR is of great significance to the sub-seasonal prediction of streamflow in SRYR, but is unknown. Here, we first report a 30–60-day ISO in the streamflow in SRYR, which is regulated by the atmospheric 30–60-day ISO at mid-high latitude over North Eurasia. The 30–60-day ISO in atmosphere is featured by a Rossby wavetrain, and the wave energy propagates southward onto the TP, which causes anomalous wind response over TP. The leading anomalous high (low) with anti-cyclonic (cyclonic) wind anomalies over the TP favors dry (wet) air in lower troposphere in SRYR, via enhancing the water vapor divergence (convergence). Dry (wet) air always results in strong (weak) evaporation from the Yellow River, which causes the later streamflow valley (peak) and thereby the 30–60-day ISO in the streamflow in SRYR.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00348-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Streamflow in source region of Yellow River (SRYR) matters with regard to the adjacent and downstream water resources. Intraseasonal oscillation (ISO) in the streamflow in SRYR is of great significance to the sub-seasonal prediction of streamflow in SRYR, but is unknown. Here, we first report a 30–60-day ISO in the streamflow in SRYR, which is regulated by the atmospheric 30–60-day ISO at mid-high latitude over North Eurasia. The 30–60-day ISO in atmosphere is featured by a Rossby wavetrain, and the wave energy propagates southward onto the TP, which causes anomalous wind response over TP. The leading anomalous high (low) with anti-cyclonic (cyclonic) wind anomalies over the TP favors dry (wet) air in lower troposphere in SRYR, via enhancing the water vapor divergence (convergence). Dry (wet) air always results in strong (weak) evaporation from the Yellow River, which causes the later streamflow valley (peak) and thereby the 30–60-day ISO in the streamflow in SRYR.
中国黄河源区流量 30-60 天季内振荡的起源:来自中高纬度大气信号的视角
黄河源区的流量关系到邻近地区和下游的水资源。黄河源区流量的季内振荡(ISO)对黄河源区流量的分季节预测具有重要意义,但目前尚不清楚。在此,我们首次报道了 SRYR 地区河川流量的 30-60 天季节振荡,它受北欧亚大陆中高纬度地区大气 30-60 天季节振荡的调节。大气中的 30-60 天 ISO 是以罗斯比波列为特征的,波能向南传播到 TP 上,引起 TP 上的异常风响应。在大洋洲保护区上空的反气旋(气旋)风异常导致的异常高(低)气流,通过增强水汽发散(辐合),有利于 SRYR 对流层低层的干(湿)空气。干(湿)空气总是导致黄河强烈(微弱)的蒸发,这就造成了较晚的河谷(峰值)流量,从而导致 SRYR 河谷流量出现 30-60 天的 ISO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience Letters
Geoscience Letters Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍: Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信