Zahra Mohammadi, Hadis Mirzaei, Elahe Moradi, Amirali Bolourian, Sina Bazrpash, Masoud Tavakoli Dare, Hossein Ali Khonakdar
{"title":"Development and characterization of UV‐curable PCL/AESO/CNT nanocomposites for biomedical engineering","authors":"Zahra Mohammadi, Hadis Mirzaei, Elahe Moradi, Amirali Bolourian, Sina Bazrpash, Masoud Tavakoli Dare, Hossein Ali Khonakdar","doi":"10.1002/pat.6550","DOIUrl":null,"url":null,"abstract":"This study investigates the development and characterization of UV‐curable Poly(ε‐caprolactone) (PCL), Acrylated Epoxidized Soybean Oil (AESO), and Carbon Nanotubes (CNT) nanocomposites for biomedical engineering applications. The PCL/AESO blends were prepared in various ratios, and CNTs were incorporated at concentrations of 0.5, 1.0, and 1.5 wt% to enhance mechanical properties. The UV‐curable formulations aimed to leverage rapid curing times, precise control over material properties, and the ability to fabricate complex structures. Results indicated that the incorporation of CNTs improved the tensile strength, modulus, and toughness of the composites. The PCL/AESO/CNT nanocomposites exhibited a tensile strength increase of 25%, a modulus improvement of 30%, and a toughness enhancement of 20% compared to pure PCL. Thermal analysis showed an increase in crystallization temperature and thermal stability, with a crystallinity degree of 63.31% and a maximum degradation temperature of 407°C for the B/C 50/50/1.5 sample. Biocompatibility assessments using L929 fibroblast cells revealed that the composites supported cell viability and proliferation over 7 days with negligible cytotoxicity. Cell attachment studies indicated favorable morphology and adherence, suggesting a conducive environment for cell growth and differentiation. Hydrolytic biodegradation studies demonstrated adjustable degradation rates, making these composites suitable for various biomedical applications requiring controlled biodegradation.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"59 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6550","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the development and characterization of UV‐curable Poly(ε‐caprolactone) (PCL), Acrylated Epoxidized Soybean Oil (AESO), and Carbon Nanotubes (CNT) nanocomposites for biomedical engineering applications. The PCL/AESO blends were prepared in various ratios, and CNTs were incorporated at concentrations of 0.5, 1.0, and 1.5 wt% to enhance mechanical properties. The UV‐curable formulations aimed to leverage rapid curing times, precise control over material properties, and the ability to fabricate complex structures. Results indicated that the incorporation of CNTs improved the tensile strength, modulus, and toughness of the composites. The PCL/AESO/CNT nanocomposites exhibited a tensile strength increase of 25%, a modulus improvement of 30%, and a toughness enhancement of 20% compared to pure PCL. Thermal analysis showed an increase in crystallization temperature and thermal stability, with a crystallinity degree of 63.31% and a maximum degradation temperature of 407°C for the B/C 50/50/1.5 sample. Biocompatibility assessments using L929 fibroblast cells revealed that the composites supported cell viability and proliferation over 7 days with negligible cytotoxicity. Cell attachment studies indicated favorable morphology and adherence, suggesting a conducive environment for cell growth and differentiation. Hydrolytic biodegradation studies demonstrated adjustable degradation rates, making these composites suitable for various biomedical applications requiring controlled biodegradation.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.