Dillirani Nagarajan, Guruvignesh Senthilkumar, Chiu‐Wen Chen, N. Karmegam, L. Praburaman, Woong Kim, Cheng‐Di Dong
{"title":"Sustainable bioplastics from seaweed polysaccharides: A comprehensive review","authors":"Dillirani Nagarajan, Guruvignesh Senthilkumar, Chiu‐Wen Chen, N. Karmegam, L. Praburaman, Woong Kim, Cheng‐Di Dong","doi":"10.1002/pat.6536","DOIUrl":null,"url":null,"abstract":"The use of macroalgae for food has been extensive in Asia historically. However, there has been a renewed interest at present in macroalgae due to its recognition as a potential carbon capture agent and a blue carbon donor besides their utility in biofuel production. Bioplastics is an umbrella term for a wide variety of polymers that can be either biobased or biodegradable, or both. Macroalgal polysaccharides and their inherent film‐forming capacity are exploited in the bioplastics industry and macroalgal polysaccharide‐based biofilms are extensively used in food packaging due to their compatibility and ease of production. Commercial macroalgae‐based bioplastics production is ongoing, with research dedicated to the development of biodegradable/compostable biofilms suitable for the food packing and biomedicine sector. This review aims to provide an overview of the polysaccharides of macroalgae that can be used to form biofilms and bioplastics. Different methods for biofilm formation are discussed along with summarizing the effect of plasticizers, the method of film formation, and biodegradability. The major source of marine macroalgal polysaccharaides are agar, alginate, carrageenan, laminarin, fucoidan, and ulvan. Different groups of macroalgae are utilized for the production of polysaccharide derived bioplatics, namely, brown algae (<jats:italic>Padina pavonica, Ascophyllum nodosum, Laminaria japonica, Rugulopteryx okamurae, Sargassum natans, Sargassum siliquosum, Jolyna laminarioides, Gracilaria salicornia</jats:italic>), green algae (<jats:italic>Ulva fasciata, Halimeda opuntia, Codium fragile, Ulva intestinalis, Ulva lactuca, Ulva rigida</jats:italic>), and red algae (<jats:italic>Eucheuma cottonii, Porphyra</jats:italic> sp., <jats:italic>Kappaphycus alvarezii, Gracilaria corticata</jats:italic>). The outcome of the review reveals that there is a vast scope for macroalgal polysaccharide‐derived bioplastics for a sustainable environment.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"28 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6536","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The use of macroalgae for food has been extensive in Asia historically. However, there has been a renewed interest at present in macroalgae due to its recognition as a potential carbon capture agent and a blue carbon donor besides their utility in biofuel production. Bioplastics is an umbrella term for a wide variety of polymers that can be either biobased or biodegradable, or both. Macroalgal polysaccharides and their inherent film‐forming capacity are exploited in the bioplastics industry and macroalgal polysaccharide‐based biofilms are extensively used in food packaging due to their compatibility and ease of production. Commercial macroalgae‐based bioplastics production is ongoing, with research dedicated to the development of biodegradable/compostable biofilms suitable for the food packing and biomedicine sector. This review aims to provide an overview of the polysaccharides of macroalgae that can be used to form biofilms and bioplastics. Different methods for biofilm formation are discussed along with summarizing the effect of plasticizers, the method of film formation, and biodegradability. The major source of marine macroalgal polysaccharaides are agar, alginate, carrageenan, laminarin, fucoidan, and ulvan. Different groups of macroalgae are utilized for the production of polysaccharide derived bioplatics, namely, brown algae (Padina pavonica, Ascophyllum nodosum, Laminaria japonica, Rugulopteryx okamurae, Sargassum natans, Sargassum siliquosum, Jolyna laminarioides, Gracilaria salicornia), green algae (Ulva fasciata, Halimeda opuntia, Codium fragile, Ulva intestinalis, Ulva lactuca, Ulva rigida), and red algae (Eucheuma cottonii, Porphyra sp., Kappaphycus alvarezii, Gracilaria corticata). The outcome of the review reveals that there is a vast scope for macroalgal polysaccharide‐derived bioplastics for a sustainable environment.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.