Computational modeling and statistical analysis of buckling characteristics of polysilicon reinforced fiber

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Waham Ashaier Laftah and Wan Aizan Wan Abdul Rahman
{"title":"Computational modeling and statistical analysis of buckling characteristics of polysilicon reinforced fiber","authors":"Waham Ashaier Laftah and Wan Aizan Wan Abdul Rahman","doi":"10.1088/2053-1591/ad68d0","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to evaluate the effect of volume fraction of continuous carbon fiber and sample length on buckling characteristics of polysilicon. A statistical design of 12 samples were formulated with constant cross-section area of 2500 mm2 using Design of Experiment software (DOE). The samples were sketched using ABAQUS 2019 software, and the total buckling force each sample was estimated. The estimated buckling forces were statically evaluated as a response using DOE. The estimated forces of 3.48776e07, 4.00652e07 and 5.78142e07 newton for the simulated samples of 100 mm in length and 0,15, and 25% volume fraction respectively, is an indication of positive effect of fiber volume fraction on the necessary force for buckling. In addition, similar tendency was found in other samples (the higher fiber volume fractions the higher buckling force). However, the estimated buckling force for each sample was negatively affected with length of the sample. The result indicated a value of 4.00652E+07, 5.00447E+06 and 1.80390E+06 newton at a constant fiber volume fraction and different length of 100, 300 and 500 mm respectively. The statistical analysis of the simulated buckling force showed a signification design, and the date of one factor effect is highly supported by the simulated buckling forces. The equation of a significant design can be used to estimate the buckling force at any fiber volume fraction and sample length.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"57 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad68d0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to evaluate the effect of volume fraction of continuous carbon fiber and sample length on buckling characteristics of polysilicon. A statistical design of 12 samples were formulated with constant cross-section area of 2500 mm2 using Design of Experiment software (DOE). The samples were sketched using ABAQUS 2019 software, and the total buckling force each sample was estimated. The estimated buckling forces were statically evaluated as a response using DOE. The estimated forces of 3.48776e07, 4.00652e07 and 5.78142e07 newton for the simulated samples of 100 mm in length and 0,15, and 25% volume fraction respectively, is an indication of positive effect of fiber volume fraction on the necessary force for buckling. In addition, similar tendency was found in other samples (the higher fiber volume fractions the higher buckling force). However, the estimated buckling force for each sample was negatively affected with length of the sample. The result indicated a value of 4.00652E+07, 5.00447E+06 and 1.80390E+06 newton at a constant fiber volume fraction and different length of 100, 300 and 500 mm respectively. The statistical analysis of the simulated buckling force showed a signification design, and the date of one factor effect is highly supported by the simulated buckling forces. The equation of a significant design can be used to estimate the buckling force at any fiber volume fraction and sample length.
多晶硅增强纤维屈曲特性的计算建模和统计分析
本研究旨在评估连续碳纤维的体积分数和样品长度对多晶硅屈曲特性的影响。使用实验设计软件(DOE)对横截面积恒定为 2500 mm2 的 12 个样品进行了统计设计。使用 ABAQUS 2019 软件绘制了样品草图,并估算了每个样品的总屈曲力。使用 DOE 将估算的屈曲力作为响应进行静态评估。对于长度为 100 毫米、体积分数为 0、15 和 25% 的模拟样品,估算的屈曲力分别为 3.48776e07 牛顿、4.00652e07 牛顿和 5.78142e07 牛顿,这表明纤维体积分数对屈曲所需的力有积极影响。此外,在其他样品中也发现了类似的趋势(纤维体积分数越高,屈曲力越大)。然而,每个样品的估计屈曲力都受到样品长度的负面影响。结果表明,在纤维体积分数不变、长度分别为 100、300 和 500 毫米的情况下,其值分别为 4.00652E+07、5.00447E+06 和 1.80390E+06牛顿。对模拟屈曲力的统计分析表明,设计是有意义的,模拟屈曲力高度支持单因素效应日期。显式设计方程可用于估算任何纤维体积分数和样品长度下的屈曲力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信