Alberto Coronado-Martín, Constanza Martin-Vásquez, Marybel Jáquez, Abdellatif Bahaji, Alejandro Atarés
{"title":"Micropropagation and genetic transformation of Byblis liniflora","authors":"Alberto Coronado-Martín, Constanza Martin-Vásquez, Marybel Jáquez, Abdellatif Bahaji, Alejandro Atarés","doi":"10.1007/s11627-024-10448-7","DOIUrl":null,"url":null,"abstract":"<p><i>Byblis</i>, a small genus of carnivorous plants predominantly found in Australia, is characterized by its passive trapping mechanism and unique floral features. The chemical composition of <i>Byblis</i>, including identified phenylethanoid glycosides, particularly acteoside, highlights its pharmacological potential with various biological activities. <i>In vitro</i> culture techniques have been established for propagation, with micropropagation protocols developed for different <i>Byblis</i> species. However, information on genetic transformation, vital for trait modification and enhanced pharmacological interest, remains limited. This study focuses on optimizing micropropagation, adventitious regeneration, and genetic transformation methods for <i>Byblis liniflora</i>. Adventitious regeneration rates were highest in medium with reduced Murashige and Skoog salts (MS/10) and sucrose (3 gL<sup>−1</sup>) concentrations. Zeatin supplementation (1 mgL<sup>−1</sup>) further improved regeneration rates and bud development with 100% of regenerated root explants and 8.8 shoots per explant. Liquid MB3 medium supplemented with indole-3-acetic acid (IAA) 5 mgL<sup>−1</sup> facilitated efficient rooting and acclimatization. The establishment of an efficient <i>Rhizobium</i>-mediated genetic transformation method yielded transgenic plants expressing green fluorescent protein (GFP). Molecular analysis confirmed transgene integration, marking the first successful genetic transformation in the <i>Byblis</i> genus. These advancements pave the way for exploring gene function and enhancing pharmacological properties, thereby broadening our understanding and utilization of carnivorous plants like <i>Byblis</i>.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":"83 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology - Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11627-024-10448-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Byblis, a small genus of carnivorous plants predominantly found in Australia, is characterized by its passive trapping mechanism and unique floral features. The chemical composition of Byblis, including identified phenylethanoid glycosides, particularly acteoside, highlights its pharmacological potential with various biological activities. In vitro culture techniques have been established for propagation, with micropropagation protocols developed for different Byblis species. However, information on genetic transformation, vital for trait modification and enhanced pharmacological interest, remains limited. This study focuses on optimizing micropropagation, adventitious regeneration, and genetic transformation methods for Byblis liniflora. Adventitious regeneration rates were highest in medium with reduced Murashige and Skoog salts (MS/10) and sucrose (3 gL−1) concentrations. Zeatin supplementation (1 mgL−1) further improved regeneration rates and bud development with 100% of regenerated root explants and 8.8 shoots per explant. Liquid MB3 medium supplemented with indole-3-acetic acid (IAA) 5 mgL−1 facilitated efficient rooting and acclimatization. The establishment of an efficient Rhizobium-mediated genetic transformation method yielded transgenic plants expressing green fluorescent protein (GFP). Molecular analysis confirmed transgene integration, marking the first successful genetic transformation in the Byblis genus. These advancements pave the way for exploring gene function and enhancing pharmacological properties, thereby broadening our understanding and utilization of carnivorous plants like Byblis.
期刊介绍:
Founded in 1965, In Vitro Cellular & Developmental Biology - Plant is the only journal devoted solely to worldwide coverage of in vitro biology in plants. Its high-caliber original research and reviews make it required reading for anyone who needs comprehensive coverage of the latest developments and state-of-the-art research in plant cell and tissue culture and biotechnology from around the world.