Extreme heating of minor ions in imbalanced solar-wind turbulence

Michael F. Zhang, Matthew W. Kunz, Jonathan Squire, Kristopher G. Klein
{"title":"Extreme heating of minor ions in imbalanced solar-wind turbulence","authors":"Michael F. Zhang, Matthew W. Kunz, Jonathan Squire, Kristopher G. Klein","doi":"arxiv-2408.04703","DOIUrl":null,"url":null,"abstract":"Minor ions in the solar corona are heated to extreme temperatures, far in\nexcess of those of the electrons and protons that comprise the bulk of the\nplasma. These highly non-thermal distributions make minor ions sensitive probes\nof the underlying collisionless heating processes, which are crucial to coronal\nheating and the creation of the solar wind. The recent discovery of the\n\"helicity barrier\" offers a mechanism where imbalanced Alfv\\'enic turbulence in\nlow-beta plasmas preferentially heats protons over electrons, generating\nhigh-frequency, proton-cyclotron-resonant fluctuations. We use the\nhybrid-kinetic particle-in-cell code, Pegasus++, to drive imbalanced Alfv\\'enic\nturbulence in a 3D low-beta plasma with additional passive ion species,\nHe$^{2+}$ and O$^{5+}$. A helicity barrier naturally develops, followed by\nclear phase-space signatures of oblique ion-cyclotron-wave heating and\nLandau-resonant heating from the imbalanced Alfv\\'enic fluctuations. The former\nresults in characteristically arced ion velocity distribution functions, whose\nnon-bi-Maxwellian features are shown by linear ALPS calculations to be critical\nto the heating process. Additional features include a steep transition-range\nelectromagnetic spectrum, the presence of ion-cyclotron waves propagating in\nthe direction of imbalance, significantly enhanced proton-to-electron heating\nratios, anisotropic ion temperatures that are significantly more perpendicular\nwith respect to magnetic field, and extreme heating of heavier species in a\nmanner consistent with empirically derived mass scalings informed by\nmeasurements. None of these features are realized in an otherwise equivalent\nsimulation of balanced turbulence. If seen simultaneously in the fast solar\nwind, these signatures of the helicity barrier would testify to the necessity\nof incorporating turbulence imbalance in a complete theory for the evolution of\nthe solar wind.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Minor ions in the solar corona are heated to extreme temperatures, far in excess of those of the electrons and protons that comprise the bulk of the plasma. These highly non-thermal distributions make minor ions sensitive probes of the underlying collisionless heating processes, which are crucial to coronal heating and the creation of the solar wind. The recent discovery of the "helicity barrier" offers a mechanism where imbalanced Alfv\'enic turbulence in low-beta plasmas preferentially heats protons over electrons, generating high-frequency, proton-cyclotron-resonant fluctuations. We use the hybrid-kinetic particle-in-cell code, Pegasus++, to drive imbalanced Alfv\'enic turbulence in a 3D low-beta plasma with additional passive ion species, He$^{2+}$ and O$^{5+}$. A helicity barrier naturally develops, followed by clear phase-space signatures of oblique ion-cyclotron-wave heating and Landau-resonant heating from the imbalanced Alfv\'enic fluctuations. The former results in characteristically arced ion velocity distribution functions, whose non-bi-Maxwellian features are shown by linear ALPS calculations to be critical to the heating process. Additional features include a steep transition-range electromagnetic spectrum, the presence of ion-cyclotron waves propagating in the direction of imbalance, significantly enhanced proton-to-electron heating ratios, anisotropic ion temperatures that are significantly more perpendicular with respect to magnetic field, and extreme heating of heavier species in a manner consistent with empirically derived mass scalings informed by measurements. None of these features are realized in an otherwise equivalent simulation of balanced turbulence. If seen simultaneously in the fast solar wind, these signatures of the helicity barrier would testify to the necessity of incorporating turbulence imbalance in a complete theory for the evolution of the solar wind.
不平衡太阳风湍流中小离子的极端加热
日冕中的小离子被加热到极高的温度,远远超过构成等离子体主体的电子和质子的温度。这些高度非热分布使小离子成为潜在的无碰撞加热过程的灵敏探测器,这对日冕加热和太阳风的产生至关重要。最近发现的 "螺旋屏障 "提供了一种机制,即低贝塔等离子体中不平衡的Alfv\'enic 湍流会优先加热质子而不是电子,从而产生高频质子-周期共振波动。我们使用混合动力粒子-胞内代码 Pegasus++ 来驱动三维低贝塔等离子体中的不平衡 Alfv\'en 湍流,其中包含额外的被动离子物种 He$^{2+}$ 和 O$^{5+}$。自然形成了螺旋屏障,随后出现了斜离子-回旋波加热的周期相空间特征,以及来自不平衡阿尔夫波动的兰道共振加热。前者导致了特征性的弧形离子速度分布函数,线性ALPS计算表明,弧形离子速度分布函数的双麦克斯韦特征是加热过程的关键。其他特征包括:陡峭的过渡范围电磁频谱、存在向不平衡方向传播的离子-回旋波、质子-电子热比显著增强、各向异性的离子温度(与磁场的垂直度显著增加)以及较重物质的极度加热,其方式与通过测量获得的经验质量标度一致。在平衡湍流的等效模拟中,这些特征无一实现。如果同时出现在快速太阳风中,这些螺旋障碍的特征将证明有必要将湍流不平衡纳入太阳风演化的完整理论中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信