Electrochemical goniometry: keystone reactivity at the three-phase boundary

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Thomas S. Varley, Nathan S. Lawrence, Jay D. Wadhawan
{"title":"Electrochemical goniometry: keystone reactivity at the three-phase boundary","authors":"Thomas S. Varley, Nathan S. Lawrence, Jay D. Wadhawan","doi":"10.1007/s10008-024-05932-4","DOIUrl":null,"url":null,"abstract":"<p>Contact angles of liquid, spherical cap droplets immobilised on an electrode surface and bathed by a fluid are important, quantifiable measures of the liquid/fluid interfacial tension. Optical goniometry, even if computer assisted, suffers when the contact angle is 10° or less. In this work, an alternative method of measurement is considered: electrochemical techniques (voltammetry and chronoamperometry), which rely on the transport of material from within the droplet to the conductive surface. As a result of the reactions that take place at the triple phase boundary, these are demonstrated to provide information on the size and the shape of the droplet, including its contact angle, for the cases when the droplets have a redox analyte and either have a supporting electrolyte, or not. The voltammetric behaviour is seen to change from exhaustive, thin film characteristics, to quasi-steady-state signals as the droplet becomes bigger, or the scan rate becomes larger, or diffusion of the redox material inside the droplet becomes slower. One of the surprising outcomes is that there is a zone of planar diffusion only in the case of the supported droplets, with both the droplet size and its contact angle determining whether this is seen at conventional combinations of scan rates and diffusion coefficients. Experimental data are provided which emphasize key features pertaining to the nature of the redox system and illustrate the facile nature of the contact angle estimation process, albeit to within 10% uncertainty.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-05932-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Contact angles of liquid, spherical cap droplets immobilised on an electrode surface and bathed by a fluid are important, quantifiable measures of the liquid/fluid interfacial tension. Optical goniometry, even if computer assisted, suffers when the contact angle is 10° or less. In this work, an alternative method of measurement is considered: electrochemical techniques (voltammetry and chronoamperometry), which rely on the transport of material from within the droplet to the conductive surface. As a result of the reactions that take place at the triple phase boundary, these are demonstrated to provide information on the size and the shape of the droplet, including its contact angle, for the cases when the droplets have a redox analyte and either have a supporting electrolyte, or not. The voltammetric behaviour is seen to change from exhaustive, thin film characteristics, to quasi-steady-state signals as the droplet becomes bigger, or the scan rate becomes larger, or diffusion of the redox material inside the droplet becomes slower. One of the surprising outcomes is that there is a zone of planar diffusion only in the case of the supported droplets, with both the droplet size and its contact angle determining whether this is seen at conventional combinations of scan rates and diffusion coefficients. Experimental data are provided which emphasize key features pertaining to the nature of the redox system and illustrate the facile nature of the contact angle estimation process, albeit to within 10% uncertainty.

Abstract Image

电化学测角:三相边界的基石反应性
固定在电极表面并被流体浸泡的液体球帽液滴的接触角是衡量液体/流体界面张力的重要量化指标。当接触角小于或等于 10°时,即使有计算机辅助的光学测角法也会受到影响。在这项工作中,我们考虑了另一种测量方法:电化学技术(伏安法和时变法),它依赖于物质从液滴内部向导电表面的传输。由于在三相边界发生的反应,在液滴含有氧化还原分析物和支持电解质或没有支持电解质的情况下,这些技术都能提供有关液滴大小和形状的信息,包括其接触角。当液滴变大、扫描速率变大或氧化还原物质在液滴内的扩散速度变慢时,伏安行为会从详尽的薄膜特征转变为准稳态信号。其中一个令人惊讶的结果是,只有在有支撑液滴的情况下才会出现平面扩散区,液滴大小和接触角决定了在扫描速率和扩散系数的常规组合下是否会出现这种情况。所提供的实验数据强调了与氧化还原系统性质有关的关键特征,并说明了接触角估算过程的简便性,尽管不确定性在 10% 以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信