Alberto Celma , Nikiforos Alygizakis , Lidia Belova , Lubertus Bijlsma , David Fabregat-Safont , Frank Menger , Rubén Gil-Solsona
{"title":"Ion mobility separation coupled to high-resolution mass spectrometry in environmental analysis – Current state and future potential","authors":"Alberto Celma , Nikiforos Alygizakis , Lidia Belova , Lubertus Bijlsma , David Fabregat-Safont , Frank Menger , Rubén Gil-Solsona","doi":"10.1016/j.teac.2024.e00239","DOIUrl":null,"url":null,"abstract":"<div><p>The hyphenation of ion mobility separation (IMS) with high-resolution mass spectrometry (HRMS) presents a milestone in the screening of organic micropollutants (OMPs) in complex environmental matrices. Its use has become progressively more widespread in environmental analysis and has led to the development of novel analytical strategies. This work provides a comprehensive overview of the advantages of using IMS-HRMS instrumentation, with a special focus on environmental screening studies. IMS provides an additional parameter for OMP identification, a reduction of spectral background noise and the power to resolve isomeric/isobaric coeluting interferences. These advantages lead to a reduction of false positive identifications. By describing the fundamentals and rationale behind the observed advancements, we highlight areas for further development that will unlock new potential of IMS-HRMS. For example, an enhanced availability of empirical IMS data following the FAIR principles, a better standardization of IMS-HRMS data processing workflows and a higher IMS resolving power are possible ways to advance the use of IMS-HRMS instruments for the analysis of complex environmental samples.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"43 ","pages":"Article e00239"},"PeriodicalIF":11.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214158824000151/pdfft?md5=de53b0cee0cb095e4ef82aca7bb9656e&pid=1-s2.0-S2214158824000151-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158824000151","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The hyphenation of ion mobility separation (IMS) with high-resolution mass spectrometry (HRMS) presents a milestone in the screening of organic micropollutants (OMPs) in complex environmental matrices. Its use has become progressively more widespread in environmental analysis and has led to the development of novel analytical strategies. This work provides a comprehensive overview of the advantages of using IMS-HRMS instrumentation, with a special focus on environmental screening studies. IMS provides an additional parameter for OMP identification, a reduction of spectral background noise and the power to resolve isomeric/isobaric coeluting interferences. These advantages lead to a reduction of false positive identifications. By describing the fundamentals and rationale behind the observed advancements, we highlight areas for further development that will unlock new potential of IMS-HRMS. For example, an enhanced availability of empirical IMS data following the FAIR principles, a better standardization of IMS-HRMS data processing workflows and a higher IMS resolving power are possible ways to advance the use of IMS-HRMS instruments for the analysis of complex environmental samples.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.