{"title":"Cutting failure behavior of foam core sandwich plates","authors":"Hui Yuan, Xiwei Wu, Jianxun Zhang","doi":"10.1016/j.ijsolstr.2024.113009","DOIUrl":null,"url":null,"abstract":"<div><p>During the ship, collisions with reefs or grounding may cause damage to the hull of ships made of sandwich plates. The cutting failure mechanism of sandwich panels is still not fully understood. In this paper, the failure behavior of metal foam sandwich plates under cutting load by a wedge-shaped indenter is studied through analytical, experimental, and numerical methods. An analytical model is proposed to describe the cutting failure behavior of foam core sandwich plates. Based on experimental results, three distinct failure modes of foam sandwich plates with varying thicknesses are observed. Numerical simulations are performed, and analytical and numerical results capture experimental results reasonably. The effects of core thickness, face-sheet thickness, and tip angle and cutting angle of wedge indenter on the failure mode, load-carrying capacity and energy absorption performance of the sandwich plates are explored. The present analytical model can effectively predict the cutting failure behavior of sandwich plates.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"303 ","pages":"Article 113009"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003688","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
During the ship, collisions with reefs or grounding may cause damage to the hull of ships made of sandwich plates. The cutting failure mechanism of sandwich panels is still not fully understood. In this paper, the failure behavior of metal foam sandwich plates under cutting load by a wedge-shaped indenter is studied through analytical, experimental, and numerical methods. An analytical model is proposed to describe the cutting failure behavior of foam core sandwich plates. Based on experimental results, three distinct failure modes of foam sandwich plates with varying thicknesses are observed. Numerical simulations are performed, and analytical and numerical results capture experimental results reasonably. The effects of core thickness, face-sheet thickness, and tip angle and cutting angle of wedge indenter on the failure mode, load-carrying capacity and energy absorption performance of the sandwich plates are explored. The present analytical model can effectively predict the cutting failure behavior of sandwich plates.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.