Prompt Refinement or Fine-tuning? Best Practices for using LLMs in Computational Social Science Tasks

Anders Giovanni Møller, Luca Maria Aiello
{"title":"Prompt Refinement or Fine-tuning? Best Practices for using LLMs in Computational Social Science Tasks","authors":"Anders Giovanni Møller, Luca Maria Aiello","doi":"arxiv-2408.01346","DOIUrl":null,"url":null,"abstract":"Large Language Models are expressive tools that enable complex tasks of text\nunderstanding within Computational Social Science. Their versatility, while\nbeneficial, poses a barrier for establishing standardized best practices within\nthe field. To bring clarity on the values of different strategies, we present\nan overview of the performance of modern LLM-based classification methods on a\nbenchmark of 23 social knowledge tasks. Our results point to three best\npractices: select models with larger vocabulary and pre-training corpora; avoid\nsimple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific\ndata, and consider more complex forms instruction-tuning on multiple datasets\nonly when only training data is more abundant.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models are expressive tools that enable complex tasks of text understanding within Computational Social Science. Their versatility, while beneficial, poses a barrier for establishing standardized best practices within the field. To bring clarity on the values of different strategies, we present an overview of the performance of modern LLM-based classification methods on a benchmark of 23 social knowledge tasks. Our results point to three best practices: select models with larger vocabulary and pre-training corpora; avoid simple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific data, and consider more complex forms instruction-tuning on multiple datasets only when only training data is more abundant.
及时改进还是微调?在计算社会科学任务中使用 LLM 的最佳实践
大型语言模型是一种表现力极强的工具,能够在计算社会科学领域完成复杂的文本理解任务。它们的多功能性虽然有益,但却阻碍了在该领域内建立标准化的最佳实践。为了明确不同策略的价值,我们概述了基于 LLM 的现代分类方法在 23 个社会知识任务基准上的表现。我们的研究结果指出了三种最佳实践:选择具有较大词汇量和预训练语料库的模型;避免简单的 "归零",而采用人工智能增强型提示;在特定任务数据上进行微调,只有在训练数据较为丰富的情况下,才考虑在多个数据集上进行更复杂形式的指令调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信