Eulerian-Lagrangian numerical investigation of the fluid flow properties and heat transfer of a nanofluid-cooled micro pin-fin heat sink

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Naim Ben Ali , Ali Basem , Pooya Ghodratallah , Pradeep Kumar Singh , Veyan A. Musa , Dheyaa J. Jasim , Rifaqat Ali , Husam Rajab , Mohsen Ahmed , A.A. Alizad
{"title":"Eulerian-Lagrangian numerical investigation of the fluid flow properties and heat transfer of a nanofluid-cooled micro pin-fin heat sink","authors":"Naim Ben Ali ,&nbsp;Ali Basem ,&nbsp;Pooya Ghodratallah ,&nbsp;Pradeep Kumar Singh ,&nbsp;Veyan A. Musa ,&nbsp;Dheyaa J. Jasim ,&nbsp;Rifaqat Ali ,&nbsp;Husam Rajab ,&nbsp;Mohsen Ahmed ,&nbsp;A.A. Alizad","doi":"10.1016/j.jtice.2024.105674","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>While the potential benefits of hybrid nanofluids for heat transfer applications have been recognized, a comprehensive understanding of their thermal behavior remains elusive due to limited modeling data.</p></div><div><h3>Methods</h3><p>This study addresses this knowledge gap by leveraging Ansys Fluent and the Lagrangian-Eulerian technique to simulate a micro pin fin heat sink containing a novel hybrid nanofluid, composed of MoS<sub>2</sub>-Cu<sub>3</sub>O<sub>4</sub> nanoparticles suspended in water. The validity of the simulations is established through meticulous comparison with established experimental data documented in the literature. The hybrid nanofluid employed in the simulations is formulated with a concentration ranging from 0.1 % to 0.5 %. Thermo-fluidic characteristics of the studied cases such as thermal performance, friction factor, and Nusselt number are presented and discussed.</p></div><div><h3>Significant Findings</h3><p>The findings indicate that the use of a hybrid nanofluid with a 5 % concentration increases the average Nusselt number by 7.6 %, 9.1 %, and 12.8 % in different sections of the heat sink compared to a 1 % concentration. The maximum thermal performance in this study is associated with case D, where using MoS<sub>2</sub>-Cu<sub>3</sub>O<sub>4</sub> at a 5 % concentration and Reynolds number of 2000 results in an 8 % increase compared to the simple case.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"164 ","pages":"Article 105674"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003328","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

While the potential benefits of hybrid nanofluids for heat transfer applications have been recognized, a comprehensive understanding of their thermal behavior remains elusive due to limited modeling data.

Methods

This study addresses this knowledge gap by leveraging Ansys Fluent and the Lagrangian-Eulerian technique to simulate a micro pin fin heat sink containing a novel hybrid nanofluid, composed of MoS2-Cu3O4 nanoparticles suspended in water. The validity of the simulations is established through meticulous comparison with established experimental data documented in the literature. The hybrid nanofluid employed in the simulations is formulated with a concentration ranging from 0.1 % to 0.5 %. Thermo-fluidic characteristics of the studied cases such as thermal performance, friction factor, and Nusselt number are presented and discussed.

Significant Findings

The findings indicate that the use of a hybrid nanofluid with a 5 % concentration increases the average Nusselt number by 7.6 %, 9.1 %, and 12.8 % in different sections of the heat sink compared to a 1 % concentration. The maximum thermal performance in this study is associated with case D, where using MoS2-Cu3O4 at a 5 % concentration and Reynolds number of 2000 results in an 8 % increase compared to the simple case.

Abstract Image

纳米流体冷却微型针翅散热器的流体流动特性和传热的欧拉-拉格朗日数值研究
虽然人们已经认识到混合纳米流体在传热应用方面的潜在优势,但由于建模数据有限,对其热行为的全面了解仍然遥遥无期。本研究针对这一知识空白,利用 Ansys Fluent 和拉格朗日-欧拉技术模拟了含有新型混合纳米流体的微型针翅散热器,该流体由悬浮在水中的 MoS-CuO 纳米颗粒组成。通过与文献中已有的实验数据进行细致比较,确定了模拟的有效性。模拟中使用的混合纳米流体的浓度范围为 0.1 % 至 0.5 %。对所研究案例的热流体特性(如热性能、摩擦因数和努塞尔特数)进行了介绍和讨论。研究结果表明,与浓度为 1% 的纳米流体相比,使用浓度为 5% 的混合纳米流体可使散热器不同部分的平均努塞尔特数分别增加 7.6%、9.1% 和 12.8%。本研究中热效率最高的是情况 D,与简单情况相比,使用浓度为 5%、雷诺数为 2000 的 MoS-CuO 使热效率提高了 8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信