Zeqiang Han, Hongwei Xia, Guan Wang, Guangcheng Ma
{"title":"Prescribed modal vibration control and disturbance load analysis of rigid-flexible satellites","authors":"Zeqiang Han, Hongwei Xia, Guan Wang, Guangcheng Ma","doi":"10.1016/j.asr.2024.07.083","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the vibration control issues of rigid-flexible satellites and present a novel control methodology for vibration suppression during attitude maneuvers. Within the vibration model, we derive the terms of the disturbance load on each vibration mode, meticulously analyzing their effects. To reduce the impact of the disturbance load on vibration modes, the prescribed modal vibration control is proposed for vibration suppression, encompassing model adjustment, optimization of actuator/sensor deployment, and controller design. The effectiveness and the advantage of the prescribed modal vibration control are demonstrated through numerical simulations. This methodology achieves proper controlled vibration modes selection and optimized deployment, thereby amplifying the effect of vibration suppression in the presence of disturbances relative to extant vibration control methodologies.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008020","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the vibration control issues of rigid-flexible satellites and present a novel control methodology for vibration suppression during attitude maneuvers. Within the vibration model, we derive the terms of the disturbance load on each vibration mode, meticulously analyzing their effects. To reduce the impact of the disturbance load on vibration modes, the prescribed modal vibration control is proposed for vibration suppression, encompassing model adjustment, optimization of actuator/sensor deployment, and controller design. The effectiveness and the advantage of the prescribed modal vibration control are demonstrated through numerical simulations. This methodology achieves proper controlled vibration modes selection and optimized deployment, thereby amplifying the effect of vibration suppression in the presence of disturbances relative to extant vibration control methodologies.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.