Arman Barzgar Torghabeh, Iman Barzgar Torghabeh, Morteza Kafaee Razavi
{"title":"3D Printed PLA Porous Scaffolds with Engineered Cell Size and Porosity Promote the Effectiveness of the Kelvin Model for Bone Tissue Engineering","authors":"Arman Barzgar Torghabeh, Iman Barzgar Torghabeh, Morteza Kafaee Razavi","doi":"10.1002/mame.202400212","DOIUrl":null,"url":null,"abstract":"In this study, the aim is to investigate the effect of engineering the cell size and porosity of 3D‐printed poly lactic acid (PLA) porous scaffolds from the Kelvin model for bone tissue engineering applications. The Kelvin model is used as a bone tissue scaffold with different cell sizes and porosities. PLA, as a biodegradable and biocompatible polymer, is used to fabricate these scaffolds using the FDM technique. A compression test is used to evaluate the mechanical properties of scaffolds. The MTT assay has been used to investigate cell viability. For osteogenic differentiation studies, ALP activity and ARS assays are used. Increasing the porosity reduces the mechanical properties of the scaffold. While increasing the cell size at constant porosity increases the Young's modulus and yield stress in the samples, it is also observed that, in high porosities, the increase in cell size weakens the mechanical properties. Also, Kelvin model scaffolds help the proliferation and osteogenic differentiation of cells and have no toxic effect. It is demonstrated that this approach promotes the effectiveness of the Kelvin architecture for bone tissue engineering. As a result, designing the most suitable model based on cell size and porosity for the treatment process in the targeted area could be promising.","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"6 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mame.202400212","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the aim is to investigate the effect of engineering the cell size and porosity of 3D‐printed poly lactic acid (PLA) porous scaffolds from the Kelvin model for bone tissue engineering applications. The Kelvin model is used as a bone tissue scaffold with different cell sizes and porosities. PLA, as a biodegradable and biocompatible polymer, is used to fabricate these scaffolds using the FDM technique. A compression test is used to evaluate the mechanical properties of scaffolds. The MTT assay has been used to investigate cell viability. For osteogenic differentiation studies, ALP activity and ARS assays are used. Increasing the porosity reduces the mechanical properties of the scaffold. While increasing the cell size at constant porosity increases the Young's modulus and yield stress in the samples, it is also observed that, in high porosities, the increase in cell size weakens the mechanical properties. Also, Kelvin model scaffolds help the proliferation and osteogenic differentiation of cells and have no toxic effect. It is demonstrated that this approach promotes the effectiveness of the Kelvin architecture for bone tissue engineering. As a result, designing the most suitable model based on cell size and porosity for the treatment process in the targeted area could be promising.
本研究的目的是研究在骨组织工程应用中,根据开尔文模型对三维打印聚乳酸(PLA)多孔支架的细胞大小和孔隙率进行工程设计的影响。开尔文模型被用作具有不同细胞大小和孔隙率的骨组织支架。聚乳酸是一种可生物降解且具有生物相容性的聚合物,使用 FDM 技术制造这些支架。压缩试验用于评估支架的机械性能。MTT 试验用于研究细胞活力。在成骨分化研究中,使用了 ALP 活性和 ARS 试验。增加孔隙率会降低支架的机械性能。虽然在孔隙率不变的情况下增大细胞体积会增加样品的杨氏模量和屈服应力,但同时也观察到,在高孔隙率的情况下,细胞体积的增大会削弱机械性能。此外,开尔文模型支架有助于细胞的增殖和成骨分化,而且没有毒性作用。研究表明,这种方法提高了开尔文结构在骨组织工程中的有效性。因此,根据细胞大小和孔隙率设计最适合目标区域治疗过程的模型是很有前景的。
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, and processing of advanced polymeric materials.