{"title":"SMRU-Net: skin disease image segmentation using channel-space separate attention with depthwise separable convolutions","authors":"Shangwang Liu, Peixia Wang, Yinghai Lin, Bingyan Zhou","doi":"10.1007/s10044-024-01307-7","DOIUrl":null,"url":null,"abstract":"<p>Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention based on depthwise separable convolutions. The multi-scale residual U-Net modules in the encoder efficiently capture multi-scale texture information in lesions and backgrounds within a single stage, overcoming the limitations of U-Net in extracting just local features. The introduction of ConvMixer Block for global contextual modeling contributes to suppress complex background interference and enhances the overall understanding of lesion morphology. Additionally, we employ a Channel-Space Separate Attention mechanism with depthwise separable convolutions(CSSA-DSC) for feature fusion, effectively addressing the limited expressiveness issue associated with U-Net’s direct skip-connection concatenation. Experimental results on the PH2, ISIC 2017, and ISIC 2018 datasets demonstrate our method’s strong multi-scale modeling and feature expression capabilities.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"46 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01307-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Skin disease image segmentation faces two major challenges: the complex and varied lesion morphology and the presence of interfering image backgrounds. To address these difficulties in skin disease image segmentation, we propose a Residual U-Net architecture with Channel-Space Separate Attention based on depthwise separable convolutions. The multi-scale residual U-Net modules in the encoder efficiently capture multi-scale texture information in lesions and backgrounds within a single stage, overcoming the limitations of U-Net in extracting just local features. The introduction of ConvMixer Block for global contextual modeling contributes to suppress complex background interference and enhances the overall understanding of lesion morphology. Additionally, we employ a Channel-Space Separate Attention mechanism with depthwise separable convolutions(CSSA-DSC) for feature fusion, effectively addressing the limited expressiveness issue associated with U-Net’s direct skip-connection concatenation. Experimental results on the PH2, ISIC 2017, and ISIC 2018 datasets demonstrate our method’s strong multi-scale modeling and feature expression capabilities.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.