Facets in the Vietoris--Rips complexes of hypercubes

Joseph Briggs, Ziqin Feng, Chris Wells
{"title":"Facets in the Vietoris--Rips complexes of hypercubes","authors":"Joseph Briggs, Ziqin Feng, Chris Wells","doi":"arxiv-2408.01288","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the facets of the Vietoris--Rips complex\n$\\mathcal{VR}(Q_n; r)$ where $Q_n$ denotes the $n$-dimensional hypercube. We\nare particularly interested in those facets which are somehow independent of\nthe dimension $n$. Using Hadamard matrices, we prove that the number of\ndifferent dimensions of such facets is a super-polynomial function of the scale\n$r$, assuming that $n$ is sufficiently large. We show also that the $(2r-1)$-th\ndimensional homology of the complex $\\mathcal{VR}(Q_n; r)$ is non-trivial when\n$n$ is large enough, provided that the Hadamard matrix of order $2r$ exists.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the facets of the Vietoris--Rips complex $\mathcal{VR}(Q_n; r)$ where $Q_n$ denotes the $n$-dimensional hypercube. We are particularly interested in those facets which are somehow independent of the dimension $n$. Using Hadamard matrices, we prove that the number of different dimensions of such facets is a super-polynomial function of the scale $r$, assuming that $n$ is sufficiently large. We show also that the $(2r-1)$-th dimensional homology of the complex $\mathcal{VR}(Q_n; r)$ is non-trivial when $n$ is large enough, provided that the Hadamard matrix of order $2r$ exists.
超立方体的Vietoris--Rips复合体中的刻面
在本文中,我们研究了 Vietoris--Rips complex$mathcal{VR}(Q_n; r)$ 的面,其中 $Q_n$ 表示 $n$ 维超立方。我们对那些与维数 $n$ 无关的面特别感兴趣。利用哈达玛矩阵,我们证明了在假设 $n$ 足够大的情况下,这种面的不同维数是尺度 $r$ 的超多项式函数。我们还证明,当$n$足够大时,只要阶数为$2r$的哈达玛矩阵存在,复数$\mathcal{VR}(Q_n; r)$的$(2r-1)$三维同调就不是三维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信