Quasi-elliptic cohomology of 4-spheres

Zhen Huan
{"title":"Quasi-elliptic cohomology of 4-spheres","authors":"Zhen Huan","doi":"arxiv-2408.02278","DOIUrl":null,"url":null,"abstract":"Quasi-elliptic cohomology is conjectured by Sati and Schreiber as a\nparticularly suitable approximation to equivariant 4-th Cohomotopy, which\nclassifies the charges carried by M-branes in M-theory in a way that is\nanalogous to the traditional idea that complex K-theory classifies the charges\nof D-branes in string theory. In this paper we compute quasi-elliptic\ncohomology of 4-spheres under the action by some finite subgroups that are the\nmost interesting isotropy groups where the M5-branes may sit.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-elliptic cohomology is conjectured by Sati and Schreiber as a particularly suitable approximation to equivariant 4-th Cohomotopy, which classifies the charges carried by M-branes in M-theory in a way that is analogous to the traditional idea that complex K-theory classifies the charges of D-branes in string theory. In this paper we compute quasi-elliptic cohomology of 4-spheres under the action by some finite subgroups that are the most interesting isotropy groups where the M5-branes may sit.
4 球体的准椭圆同调
准椭圆同调学(Quasi-elliptic cohomology)是萨提(Sati)和施雷伯(Schreiber)的猜想,它是等变 4-th 同调学(Equivariant 4-th Cohomotopy)的一个特别合适的近似,它将 M 理论中的 M 粒子所带的电荷进行了分类,这与复 K 理论将弦理论中的 D 粒子所带的电荷进行分类的传统观点类似。在本文中,我们计算了一些有限子群作用下 4 球的准椭圆全同调,这些有限子群是最有趣的等向群,M5-branes 可能就位于这些等向群中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信