Zhang Leyu , Chen Qingqing , Wei Xiaolin , Cheng Heng , Li Sen
{"title":"Effect of raw material, moisture and high-temperature tertiary air on a coal gasifier for cement precalciation","authors":"Zhang Leyu , Chen Qingqing , Wei Xiaolin , Cheng Heng , Li Sen","doi":"10.1016/j.fuproc.2024.108113","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new method of pulverized coal gasification using high-temperature tertiary air in a cement precalciner, in which an external hanging gasifier is added nearby. A full-scale model is established and simulated for the entrained flow gasifier. During the gasification process, the global reaction mechanism is used to model the release and reactions of volatiles from pulverized coal, and a particle surface reaction model is employed to calculate the fixed carbon content. The mechanism by which reducing gas reacts with NO is also considered. The results of the velocity, temperature, gas composition, NO<sub>x</sub> emissions, calorific value, volatile conversion ratio and char burnout ratio, are achieved in the simulation. The results show that the volatile conversion ratios were close to 100%, and the carbon conversion ratios ranged from 27.97% to 62.76% among all the tested conditions. The concentrations of NO at the outlet of the gasifier were 109, 98, 75, 91, 87, 76, and 90 mg/m<sup>3</sup> separately in 7 conditions. These values are significantly lower than those of complete combustion. However, the addition of raw meal had the best temperature control effect, leading to a significant decrease in thermal NO<sub>x</sub> production and no side effects on the stability of the production line.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"262 ","pages":"Article 108113"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000833/pdfft?md5=07e0e2dc09c2ab369c40206082a0c789&pid=1-s2.0-S0378382024000833-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000833","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new method of pulverized coal gasification using high-temperature tertiary air in a cement precalciner, in which an external hanging gasifier is added nearby. A full-scale model is established and simulated for the entrained flow gasifier. During the gasification process, the global reaction mechanism is used to model the release and reactions of volatiles from pulverized coal, and a particle surface reaction model is employed to calculate the fixed carbon content. The mechanism by which reducing gas reacts with NO is also considered. The results of the velocity, temperature, gas composition, NOx emissions, calorific value, volatile conversion ratio and char burnout ratio, are achieved in the simulation. The results show that the volatile conversion ratios were close to 100%, and the carbon conversion ratios ranged from 27.97% to 62.76% among all the tested conditions. The concentrations of NO at the outlet of the gasifier were 109, 98, 75, 91, 87, 76, and 90 mg/m3 separately in 7 conditions. These values are significantly lower than those of complete combustion. However, the addition of raw meal had the best temperature control effect, leading to a significant decrease in thermal NOx production and no side effects on the stability of the production line.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.