Translating batch to flow: New procedures for optimizing iron oxide nanoparticle synthesis

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-08-07 DOI:10.1016/j.matt.2024.06.014
Marwa M.I. Rizk , Gemma-Louise Davies
{"title":"Translating batch to flow: New procedures for optimizing iron oxide nanoparticle synthesis","authors":"Marwa M.I. Rizk ,&nbsp;Gemma-Louise Davies","doi":"10.1016/j.matt.2024.06.014","DOIUrl":null,"url":null,"abstract":"<div><p>The precise tuning of iron oxide nanoparticles (IONPs) to achieve controlled sizes is crucial for numerous applications. High temperature synthesis is most appropriate to achieve small, uniform sizes but suffers from challenges with reproducibility and scale-up. Flow chemistry/engineering approaches are gaining popularity to address nanoparticle (NP) production scalability, however they are plagued with issues in successfully translating batch to flow. This preview highlights a recent breakthrough in the design of a continuous flow reactor system capable of high temperature synthesis of IONPs with tuneable sizes, ranging 2 to 17 nm at gram-per-day scales, far exceeding batch capabilities.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 8","pages":"Pages 2732-2734"},"PeriodicalIF":17.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003333","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The precise tuning of iron oxide nanoparticles (IONPs) to achieve controlled sizes is crucial for numerous applications. High temperature synthesis is most appropriate to achieve small, uniform sizes but suffers from challenges with reproducibility and scale-up. Flow chemistry/engineering approaches are gaining popularity to address nanoparticle (NP) production scalability, however they are plagued with issues in successfully translating batch to flow. This preview highlights a recent breakthrough in the design of a continuous flow reactor system capable of high temperature synthesis of IONPs with tuneable sizes, ranging 2 to 17 nm at gram-per-day scales, far exceeding batch capabilities.

将批量转化为流程:优化氧化铁纳米粒子合成的新程序
精确调节氧化铁纳米粒子(IONPs)以达到可控尺寸对许多应用都至关重要。高温合成最适合实现小而均匀的尺寸,但在可重复性和规模化方面存在挑战。为解决纳米粒子 (NP) 生产的可扩展性问题,流动化学/工程方法越来越受到欢迎,但这些方法在成功地将批量转化为流动方面存在诸多问题。本预览重点介绍最近在连续流反应器系统设计方面取得的突破,该系统能够在高温下合成尺寸可调的 IONPs,其尺寸范围为 2 到 17 纳米,日产量为克,远远超过了批量生产能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信