Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

IF 1.8 4区 工程技术 Q3 Chemical Engineering
Soen Steven, Pandit Hernowo, Nugroho A. Sasongko, Adik A. Soedarsono, Maya L. D. Wardani, Geby Otivriyanti, Ernie S. A. Soekotjo, Ibnu M. Hidayatullah, Intan C. Sophiana, Neng T. U. Culsum, Imam M. Fajri, Pasymi Pasymi, Yazid Bindar
{"title":"Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation","authors":"Soen Steven, Pandit Hernowo, Nugroho A. Sasongko, Adik A. Soedarsono, Maya L. D. Wardani, Geby Otivriyanti, Ernie S. A. Soekotjo, Ibnu M. Hidayatullah, Intan C. Sophiana, Neng T. U. Culsum, Imam M. Fajri, Pasymi Pasymi, Yazid Bindar","doi":"10.1002/apj.3137","DOIUrl":null,"url":null,"abstract":"Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard ‐ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen–Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356–696°C, and the maximum flame temperature is 1587–1697°C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard ‐ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen–Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356–696°C, and the maximum flame temperature is 1587–1697°C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
利用计算流体动力学模拟揭示水平管道和生物质燃烧器中的流动结构
计算流体动力学(CFD)是一种强大的工具,可提供单元过程中详细的湍流信息。因此,本研究旨在揭示水平管道和生物质燃烧器中的流动结构。模拟采用标准模型 ANSYS Fluent。结果显示,雷诺数越大,湍流越多。根据范宁的相关性,管道直径越小,管道内的压降也越陡。在入口长度与管道直径之比符合哈根-普瓦斯耶规则的位置,可以发现层流状态下的充分发展流动。喷射流中的抽吸现象也与喷射器的工作原理类似。生物质燃烧器的平均燃烧温度为 356-696°C,最高火焰温度为 1587-1697°C。随后,空气首先流经燃烧器区域,然后在进入燃烧室时流向出口。而颗粒流则不然,颗粒在燃烧器区域经历沉降,然后在进入燃烧室时下降。这项研究还证明,二次供气可在燃烧器中产生更多的循环效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信