A Quasi-Conservative Alternative WENO Finite Difference Scheme for Solving Compressible Multicomponent Flows

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yanan Yang, Hua Shen, Zhiwei He
{"title":"A Quasi-Conservative Alternative WENO Finite Difference Scheme for Solving Compressible Multicomponent Flows","authors":"Yanan Yang, Hua Shen, Zhiwei He","doi":"10.1007/s10915-024-02645-8","DOIUrl":null,"url":null,"abstract":"<p>We construct a quasi-conservative alternative WENO finite difference scheme respectively coupled with the global Lax-Friedrichs (AWENO-GLF) and the contact restored Harten-Lax-van Leer approximate Riemann solver (AWENO-HLLC) for solving compressible multicomponent flows. The mass equation, the momentum equation, and the energy equation are discretized by a fully conservative AWENO-GLF or AWENO-HLLC finite difference scheme from which a consistent nonconservative discretization of the topological equation is derived according to the velocity and pressure equilibrium principle proposed by Agrall (J Comput Phys 125:150–160, 1996). We prove that, coupling with the constructed scheme, WENO interpolations with common weights for conservative variables or standard WENO interpolations with independent weights for primitive quantities can maintain velocity and pressure equilibrium. Numerical examples demonstrate that AWENO-HLLC scheme is not only less dissipative but also less oscillatory than classical WENO-GLF scheme for compressible multicomponent flows.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02645-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a quasi-conservative alternative WENO finite difference scheme respectively coupled with the global Lax-Friedrichs (AWENO-GLF) and the contact restored Harten-Lax-van Leer approximate Riemann solver (AWENO-HLLC) for solving compressible multicomponent flows. The mass equation, the momentum equation, and the energy equation are discretized by a fully conservative AWENO-GLF or AWENO-HLLC finite difference scheme from which a consistent nonconservative discretization of the topological equation is derived according to the velocity and pressure equilibrium principle proposed by Agrall (J Comput Phys 125:150–160, 1996). We prove that, coupling with the constructed scheme, WENO interpolations with common weights for conservative variables or standard WENO interpolations with independent weights for primitive quantities can maintain velocity and pressure equilibrium. Numerical examples demonstrate that AWENO-HLLC scheme is not only less dissipative but also less oscillatory than classical WENO-GLF scheme for compressible multicomponent flows.

Abstract Image

解决可压缩多组分流动的准保守替代 WENO 有限差分方案
我们构建了一种准保守的替代 WENO 有限差分方案,分别与全局拉克斯-弗里德里希斯求解器(AWENO-GLF)和接触复原哈顿-拉克斯-范里尔近似黎曼求解器(AWENO-HLLC)相结合,用于求解可压缩多组分流动。质量方程、动量方程和能量方程由完全保守的 AWENO-GLF 或 AWENO-HLLC 有限差分方案离散化,根据 Agrall 提出的速度和压力平衡原理(J Comput Phys 125:150-160, 1996),拓扑方程的一致非保守离散化由此得出。我们证明,与所构建的方案耦合,对保守变量采用共同权重的 WENO 插值或对原始量采用独立权重的标准 WENO 插值可以保持速度和压力平衡。数值示例表明,对于可压缩多组分流动,AWENO-HLLC 方案与经典 WENO-GLF 方案相比,不仅耗散更少,而且振荡也更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信