{"title":"U-Shaped Distribution Guided Sign Language Emotion Recognition With Semantic and Movement Features","authors":"Jiangtao Zhang;Qingshan Wang;Qi Wang","doi":"10.1109/TAFFC.2024.3409357","DOIUrl":null,"url":null,"abstract":"Emotional expression is a bridge to human communication, especially for the hearing impaired. This paper proposes a sign language emotion recognition method based on semantic and movement features by exploring the relationship between emotion valence and arousal in-depth, called SeMER. The SeMER framework includes a semantic extractor, a movement feature extractor, and an emotion classifier. The contextual relations obtained from the sign language recognition task are added to the semantic extractor as prior knowledge using a transfer learning approach to better acquire the affective polarity of semantics. In the movement feature extractor based on graph convolutional networks, a spatial-temporal adjacency matrix of gestures and node attention matrix are developed to aggregate the emotion-related movement features of intra- and inter-gestures. The proposed emotion classifier maps semantic and movement features to the emotion space. The validated U-shaped distributions of valance and arousal are then used to guide the relationship between them, and improve the accuracy of emotion prediction. In addition, a sign language emotion dataset containing 5 emotions from 18 participants, SE-Sentence, is collected through armbands with built-in surface electromyograph and inertial measurement unit sensors. Experimental results showed that SeMER achieved an accuracy and f1 value of 88% on SE-Sentence.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"15 4","pages":"2180-2191"},"PeriodicalIF":9.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10547361/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Emotional expression is a bridge to human communication, especially for the hearing impaired. This paper proposes a sign language emotion recognition method based on semantic and movement features by exploring the relationship between emotion valence and arousal in-depth, called SeMER. The SeMER framework includes a semantic extractor, a movement feature extractor, and an emotion classifier. The contextual relations obtained from the sign language recognition task are added to the semantic extractor as prior knowledge using a transfer learning approach to better acquire the affective polarity of semantics. In the movement feature extractor based on graph convolutional networks, a spatial-temporal adjacency matrix of gestures and node attention matrix are developed to aggregate the emotion-related movement features of intra- and inter-gestures. The proposed emotion classifier maps semantic and movement features to the emotion space. The validated U-shaped distributions of valance and arousal are then used to guide the relationship between them, and improve the accuracy of emotion prediction. In addition, a sign language emotion dataset containing 5 emotions from 18 participants, SE-Sentence, is collected through armbands with built-in surface electromyograph and inertial measurement unit sensors. Experimental results showed that SeMER achieved an accuracy and f1 value of 88% on SE-Sentence.
期刊介绍:
The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.