Long-Term Variability of Surface Ozone and Its Associations with NOx and Air Temperature Changes from Air Quality Monitoring at Belsk, Poland, 1995–2023
Izabela Pawlak, Janusz Krzyścin, Janusz Jarosławski
{"title":"Long-Term Variability of Surface Ozone and Its Associations with NOx and Air Temperature Changes from Air Quality Monitoring at Belsk, Poland, 1995–2023","authors":"Izabela Pawlak, Janusz Krzyścin, Janusz Jarosławski","doi":"10.3390/atmos15080960","DOIUrl":null,"url":null,"abstract":"Surface ozone (O3) and nitrogen oxides (NOx = NO + NO2) measured at the rural station in Belsk (51.83° N, 20.79° E), Poland, over the period of 1995−2023, were examined for long-term variability of O3 and its relationship to changes in the air temperature and NOx. Negative and positive trends were found for the 95th and 5th percentile, respectively, in the O3 data. A weak positive correlation (statistically significant) of 0.33 was calculated between O3 and the temperature averaged from sunrise to sunset during the photoactive part of the year (April–September). Recently, O3 maxima have become less sensitive to temperature changes, reducing the incidence of photochemical smog. The ozone–climate penalty factor decreased from 4.4 µg/m3/°C in the 1995–2004 period to 3.9 µg/m3/°C in the 2015−2023 period. The relationship between Ox (O3 + NO2) and NOx concentrations averaged from sunrise to sunset determined the local and regional contribution to Ox variability. The seasonal local and regional contributions remained unchanged in the period of 1995−2023, stabilizing the average O3 level at Belsk. “NOx-limited” and “VOC-limited” photochemical regimes prevailed in the summer and autumn, respectively. For many winter and spring seasons between 1995 and 2023, the type of photochemical regime could not be accurately determined, making it difficult to build an effective O3 mitigation policy.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"43 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080960","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Surface ozone (O3) and nitrogen oxides (NOx = NO + NO2) measured at the rural station in Belsk (51.83° N, 20.79° E), Poland, over the period of 1995−2023, were examined for long-term variability of O3 and its relationship to changes in the air temperature and NOx. Negative and positive trends were found for the 95th and 5th percentile, respectively, in the O3 data. A weak positive correlation (statistically significant) of 0.33 was calculated between O3 and the temperature averaged from sunrise to sunset during the photoactive part of the year (April–September). Recently, O3 maxima have become less sensitive to temperature changes, reducing the incidence of photochemical smog. The ozone–climate penalty factor decreased from 4.4 µg/m3/°C in the 1995–2004 period to 3.9 µg/m3/°C in the 2015−2023 period. The relationship between Ox (O3 + NO2) and NOx concentrations averaged from sunrise to sunset determined the local and regional contribution to Ox variability. The seasonal local and regional contributions remained unchanged in the period of 1995−2023, stabilizing the average O3 level at Belsk. “NOx-limited” and “VOC-limited” photochemical regimes prevailed in the summer and autumn, respectively. For many winter and spring seasons between 1995 and 2023, the type of photochemical regime could not be accurately determined, making it difficult to build an effective O3 mitigation policy.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.