Parametric study of a vortex-enhanced supersonic inductive plasma torch

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED
A Pascale, T Lafleur and C S Corr
{"title":"Parametric study of a vortex-enhanced supersonic inductive plasma torch","authors":"A Pascale, T Lafleur and C S Corr","doi":"10.1088/1361-6463/ad687d","DOIUrl":null,"url":null,"abstract":"The feed gas injection configuration in radio-frequency (RF) inductively coupled plasma (ICP) torches plays a critical role in discharge stability, gas heating, and device thermal management: particularly if a supersonic nozzle is used to subsequently accelerate the hot gas. A novel injection configuration is the bidirectional vortex, which segments the internal ICP flow field into two counter-propagating vortices that can significantly enhance gas heating and reduce heat losses. The diameter of the interface between the vortices (known as the mantle) is expected to be an important dimensional parameter affecting torch operation, especially relative to the nozzle size. In this work, we investigate the effect of nozzle throat diameter on the behaviour and performance of a vortex-enhanced supersonic ICP torch. The system is operated at RF powers and argon mass flow rates between 200–1000 W and 0–400 mg s−1 respectively, and different nozzle diameters ranging from 1.5 to 4 mm are explored. Because of the high-temperature environment, and to prevent disruption of the vortex flow fields, non-invasive diagnostics are used to measure the gas temperature and plasma density, and to infer the torch thermal efficiency and achievable gas specific enthalpy change. The maximum temperature is between 8500–9500 K with the 1.5 mm nozzle giving the highest temperature for a given power and mass flow rate, while plasma densities vary between 1020–1021 m−3 depending on the operating conditions. The thermal efficiency increases from 29% for the 1.5 mm nozzle to just above 70% for the 4 mm nozzle with a similar maximum specific enthalpy of around 1.5 MJ kg−1. These results demonstrate the important coupling between torch properties, and how system optimization can lead to tailored performance of potential interest to several ground and space-based applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"20 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad687d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The feed gas injection configuration in radio-frequency (RF) inductively coupled plasma (ICP) torches plays a critical role in discharge stability, gas heating, and device thermal management: particularly if a supersonic nozzle is used to subsequently accelerate the hot gas. A novel injection configuration is the bidirectional vortex, which segments the internal ICP flow field into two counter-propagating vortices that can significantly enhance gas heating and reduce heat losses. The diameter of the interface between the vortices (known as the mantle) is expected to be an important dimensional parameter affecting torch operation, especially relative to the nozzle size. In this work, we investigate the effect of nozzle throat diameter on the behaviour and performance of a vortex-enhanced supersonic ICP torch. The system is operated at RF powers and argon mass flow rates between 200–1000 W and 0–400 mg s−1 respectively, and different nozzle diameters ranging from 1.5 to 4 mm are explored. Because of the high-temperature environment, and to prevent disruption of the vortex flow fields, non-invasive diagnostics are used to measure the gas temperature and plasma density, and to infer the torch thermal efficiency and achievable gas specific enthalpy change. The maximum temperature is between 8500–9500 K with the 1.5 mm nozzle giving the highest temperature for a given power and mass flow rate, while plasma densities vary between 1020–1021 m−3 depending on the operating conditions. The thermal efficiency increases from 29% for the 1.5 mm nozzle to just above 70% for the 4 mm nozzle with a similar maximum specific enthalpy of around 1.5 MJ kg−1. These results demonstrate the important coupling between torch properties, and how system optimization can lead to tailored performance of potential interest to several ground and space-based applications.
涡流增强型超音速感应等离子体火炬的参数研究
射频(RF)电感耦合等离子体(ICP)火炬中的馈入气体注入配置在放电稳定性、气体加热和设备热管理方面起着至关重要的作用:尤其是在使用超音速喷嘴对热气体进行后续加速的情况下。双向漩涡是一种新颖的注入结构,它将内部 ICP 流场分割成两个反向传播的漩涡,可显著增强气体加热并减少热量损失。涡流之间的界面(称为幔)直径预计将成为影响火炬运行的重要尺寸参数,尤其是相对于喷嘴尺寸而言。在这项工作中,我们研究了喷嘴喉部直径对涡流增强超音速 ICP 火炬的行为和性能的影响。该系统在射频功率和氩气质量流量分别为 200-1000 W 和 0-400 mg s-1 的条件下运行,喷嘴直径从 1.5 毫米到 4 毫米不等。由于是在高温环境下,为防止涡流场受到破坏,采用了非侵入式诊断方法来测量气体温度和等离子体密度,并推断出火炬热效率和可实现的气体比热焓变化。最高温度在 8500-9500 K 之间,在给定功率和质量流量下,1.5 毫米喷嘴的温度最高,而等离子体密度则在 1020-1021 m-3 之间,具体取决于工作条件。热效率从 1.5 毫米喷嘴的 29% 提高到 4 毫米喷嘴的 70%,最大比热约为 1.5 MJ kg-1。这些结果表明了火炬特性之间的重要耦合关系,以及系统优化如何实现量身定制的性能,这对一些地面和空间应用具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信