{"title":"Effects of Soil Drought on Competitiveness of the Invasive Weed Aegilops tauschii","authors":"N. Wang, H. Chen","doi":"10.1134/s1021443724605640","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p><i>Aegilops tauschii</i> Coss., an invasive weed, has a detrimental impact on the winter wheat cultivation areas of China. Understanding how drought influences competitive ability of <i>A. tauschii</i> can help identify traits related to its invasiveness and guide management. Slight, moderate, and severe soil drought stress conditions were established using potted weighing and water control methods. Concurrently, the de Wit replacement experiment was conducted to assess changes in morphological structure, biomass allocation, and physiological characteristics under varying intensities of soil drought stress. Based on observations of alterations in plant height, total leaf area, and total biomass, two-factor variance analysis revealed that soil drought inhibited the growth and development of both <i>A. tauschii</i> and <i>Triticum aestivum</i> L. (‘Xinmai 32’). Furthermore, one-factor variance analysis revealed that <i>A. tauschii</i> and wheat responded to soil drought stress by increasing superoxide dismutase (SOD) activity and proline content. However, as drought severity escalated, chlorophyll content in <i>A. tauschii</i> and wheat declined significantly, while relative electrical conductivity (REC) and thiobarbituric acid (TBA) content increased markedly. The results of the fuzzy membership function indicated that <i>A. tauschii</i> exhibited greater drought tolerance compared to the tested wheat variety. Lastly, considering adjustments in the corrected index of relative competition intensity (CRCI), it was observed that soil drought amplified the competitive inhibition of <i>A. tauschii</i> on wheat. In short, <i>A. tauschii</i> was more tolerant of the soil drought stress than wheat through the favorable adjustment of morphology, biomass allocation pattern and physiological features, and soil drought intensified its competitive inhibition on wheat.</p>","PeriodicalId":21477,"journal":{"name":"Russian Journal of Plant Physiology","volume":"2012 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s1021443724605640","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aegilops tauschii Coss., an invasive weed, has a detrimental impact on the winter wheat cultivation areas of China. Understanding how drought influences competitive ability of A. tauschii can help identify traits related to its invasiveness and guide management. Slight, moderate, and severe soil drought stress conditions were established using potted weighing and water control methods. Concurrently, the de Wit replacement experiment was conducted to assess changes in morphological structure, biomass allocation, and physiological characteristics under varying intensities of soil drought stress. Based on observations of alterations in plant height, total leaf area, and total biomass, two-factor variance analysis revealed that soil drought inhibited the growth and development of both A. tauschii and Triticum aestivum L. (‘Xinmai 32’). Furthermore, one-factor variance analysis revealed that A. tauschii and wheat responded to soil drought stress by increasing superoxide dismutase (SOD) activity and proline content. However, as drought severity escalated, chlorophyll content in A. tauschii and wheat declined significantly, while relative electrical conductivity (REC) and thiobarbituric acid (TBA) content increased markedly. The results of the fuzzy membership function indicated that A. tauschii exhibited greater drought tolerance compared to the tested wheat variety. Lastly, considering adjustments in the corrected index of relative competition intensity (CRCI), it was observed that soil drought amplified the competitive inhibition of A. tauschii on wheat. In short, A. tauschii was more tolerant of the soil drought stress than wheat through the favorable adjustment of morphology, biomass allocation pattern and physiological features, and soil drought intensified its competitive inhibition on wheat.
期刊介绍:
Russian Journal of Plant Physiology is a leading journal in phytophysiology. It embraces the full spectrum of plant physiology and brings together the related aspects of biophysics, biochemistry, cytology, anatomy, genetics, etc. The journal publishes experimental and theoretical articles, reviews, short communications, and descriptions of new methods. Some issues cover special problems of plant physiology, thus presenting collections of articles and providing information in rapidly growing fields. The editorial board is highly interested in publishing research from all countries and accepts manuscripts in English.