{"title":"Cones between the cones of positive semidefinite forms and sums of squares","authors":"Charu Goel, Sarah Hess, Salma Kuhlmann","doi":"10.1515/advgeom-2024-0014","DOIUrl":null,"url":null,"abstract":"For <jats:italic>n</jats:italic>, <jats:italic>d</jats:italic> ∈ ℕ, the cone 𝓟<jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> of positive semidefinite real forms in <jats:italic>n</jats:italic> + 1 variables of degree 2<jats:italic>d</jats:italic> contains the subcone <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> of those representable as finite sums of squares of real forms. Hilbert [11] proved that these cones coincide exactly in the <jats:italic>Hilbert cases</jats:italic> (<jats:italic>n</jats:italic> + 1, 2<jats:italic>d</jats:italic>) with <jats:italic>n</jats:italic> + 1 = 2 or 2<jats:italic>d</jats:italic> = 2 or (<jats:italic>n</jats:italic> + 1, 2<jats:italic>d</jats:italic>) = (3, 4). In this paper, we induce a filtration of intermediate cones between <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> and 𝓟<jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> via the Gram matrix approach in [4] on a filtration of irreducible projective varieties <jats:italic>V</jats:italic> <jats:sub> <jats:italic>k</jats:italic>−<jats:italic>n</jats:italic> </jats:sub> ⊊ … ⊊ <jats:italic>V<jats:sub>n</jats:sub> </jats:italic> ⊊ … ⊊ <jats:italic>V</jats:italic> <jats:sub>0</jats:sub> containing the Veronese variety. Here, <jats:italic>k</jats:italic> is the dimension of the vector space of real forms in <jats:italic>n</jats:italic> + 1 variables of degree <jats:italic>d</jats:italic>. By showing that <jats:italic>V</jats:italic> <jats:sub>0</jats:sub>, …, <jats:italic>V</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> (and <jats:italic>V</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1</jats:sub> when <jats:italic>n</jats:italic> = 2) are varieties of minimal degree, we demonstrate that the corresponding intermediate cones coincide with <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub>. We moreover prove that, in the non-Hilbert cases of (<jats:italic>n</jats:italic> + 1)-ary quartics for <jats:italic>n</jats:italic> ≥ 3 and (<jats:italic>n</jats:italic> + 1)-ary sextics for <jats:italic>n</jats:italic> ≥ 2, all the remaining cone inclusions are strict.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For n, d ∈ ℕ, the cone 𝓟n+1,2d of positive semidefinite real forms in n + 1 variables of degree 2d contains the subcone Σn+1,2d of those representable as finite sums of squares of real forms. Hilbert [11] proved that these cones coincide exactly in the Hilbert cases (n + 1, 2d) with n + 1 = 2 or 2d = 2 or (n + 1, 2d) = (3, 4). In this paper, we induce a filtration of intermediate cones between Σn+1,2d and 𝓟n+1,2d via the Gram matrix approach in [4] on a filtration of irreducible projective varieties Vk−n ⊊ … ⊊ Vn ⊊ … ⊊ V0 containing the Veronese variety. Here, k is the dimension of the vector space of real forms in n + 1 variables of degree d. By showing that V0, …, Vn (and Vn+1 when n = 2) are varieties of minimal degree, we demonstrate that the corresponding intermediate cones coincide with Σn+1,2d. We moreover prove that, in the non-Hilbert cases of (n + 1)-ary quartics for n ≥ 3 and (n + 1)-ary sextics for n ≥ 2, all the remaining cone inclusions are strict.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.