Metric property of quantum Wasserstein divergences

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Gergely Bunth, József Pitrik, Tamás Titkos, Dániel Virosztek
{"title":"Metric property of quantum Wasserstein divergences","authors":"Gergely Bunth, József Pitrik, Tamás Titkos, Dániel Virosztek","doi":"10.1103/physreva.110.022211","DOIUrl":null,"url":null,"abstract":"Quantum Wasserstein divergences are modified versions of quantum Wasserstein distances defined by channels and they have been conjectured to be genuine metrics on quantum state spaces by De Palma and Trevisan. We prove triangle inequality for quantum Wasserstein divergences for every quantum system described by a separable Hilbert space and any quadratic cost operator under the assumption that a particular state involved is pure and all the states have finite energy. We also provide strong numerical evidence suggesting that the triangle inequality holds in general for an arbitrary choice of states.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022211","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Wasserstein divergences are modified versions of quantum Wasserstein distances defined by channels and they have been conjectured to be genuine metrics on quantum state spaces by De Palma and Trevisan. We prove triangle inequality for quantum Wasserstein divergences for every quantum system described by a separable Hilbert space and any quadratic cost operator under the assumption that a particular state involved is pure and all the states have finite energy. We also provide strong numerical evidence suggesting that the triangle inequality holds in general for an arbitrary choice of states.

Abstract Image

量子瓦塞尔斯泰因发散的度量特性
量子瓦瑟斯坦发散是由通道定义的量子瓦瑟斯坦距离的修正版,德帕尔马和特雷维桑猜想它们是量子态空间上的真正度量。我们证明了量子瓦瑟斯坦发散的三角不等式,它适用于由可分离的希尔伯特空间和任意二次代价算子描述的每一个量子系统,前提是所涉及的特定状态是纯的,且所有状态都具有有限能量。我们还提供了有力的数字证据,表明对于任意选择的状态,三角不等式一般都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信