Arseni Goussev, Felix Quinque, Jaewoo Joo, Andrew Burbanks
{"title":"Quantum backflow current in a ring: Optimal bounds and fractality","authors":"Arseni Goussev, Felix Quinque, Jaewoo Joo, Andrew Burbanks","doi":"10.1103/physreva.110.022216","DOIUrl":null,"url":null,"abstract":"The probability density of a quantum particle moving freely within a circular ring can exhibit local flow patterns inconsistent with its angular momentum, a phenomenon known as quantum backflow. In this study, we examine a quantum particle confined to a ring and prepared in a state composed of a fixed (yet arbitrary) number of lowest-energy eigenstates with nonnegative angular momentum. We investigate the time-dependent behavior of the probability current at a specified point along the ring's circumference. We establish precise lower and upper bounds for this probability current, thereby delineating the exact scope of the quantum backflow effect. We also present an analytical expression for a quantum state that yields a record-high backflow probability transfer, reaching over <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>95</mn><mo>%</mo></mrow></math> of the theoretical bound. Furthermore, our investigation yields compelling numerical and analytical evidence supporting the conjecture that the current-versus-time function associated with states maximizing backflow probability transfer forms a fractal curve with a dimension of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>7</mn><mo>/</mo><mn>4</mn></mrow></math>. The observed fractality may provide a characteristic, experimentally relevant signature of quantum backflow near the probability-transfer bound.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022216","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The probability density of a quantum particle moving freely within a circular ring can exhibit local flow patterns inconsistent with its angular momentum, a phenomenon known as quantum backflow. In this study, we examine a quantum particle confined to a ring and prepared in a state composed of a fixed (yet arbitrary) number of lowest-energy eigenstates with nonnegative angular momentum. We investigate the time-dependent behavior of the probability current at a specified point along the ring's circumference. We establish precise lower and upper bounds for this probability current, thereby delineating the exact scope of the quantum backflow effect. We also present an analytical expression for a quantum state that yields a record-high backflow probability transfer, reaching over of the theoretical bound. Furthermore, our investigation yields compelling numerical and analytical evidence supporting the conjecture that the current-versus-time function associated with states maximizing backflow probability transfer forms a fractal curve with a dimension of . The observed fractality may provide a characteristic, experimentally relevant signature of quantum backflow near the probability-transfer bound.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics