Dense circuit graphs and the planar Turán number of a cycle

Pub Date : 2024-08-08 DOI:10.1002/jgt.23165
Ruilin Shi, Zach Walsh, Xingxing Yu
{"title":"Dense circuit graphs and the planar Turán number of a cycle","authors":"Ruilin Shi, Zach Walsh, Xingxing Yu","doi":"10.1002/jgt.23165","DOIUrl":null,"url":null,"abstract":"The <jats:italic>planar Turán number</jats:italic> of a graph is the maximum number of edges in an ‐vertex planar graph without as a subgraph. Let denote the cycle of length . The planar Turán number is known for . We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant so that for all and . When this bound is tight up to the constant and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/jgt.23165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The planar Turán number of a graph is the maximum number of edges in an ‐vertex planar graph without as a subgraph. Let denote the cycle of length . The planar Turán number is known for . We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant so that for all and . When this bound is tight up to the constant and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.
分享
查看原文
密集电路图和循环的平面图兰数
图的平面图兰数是一个无顶点平面图的最大边数。让 表示长度为 的循环。平面图兰数是已知的。我们证明了具有一定连通性的密集平面图(称为回路图)包含大的近三角形,并利用这一结果得到了平面图兰数的结果。特别是,我们证明存在一个常数,使得对于所有 和 。当这一约束严格到常数时,就证明了 Cranston、Lidický、Liu 和 Shantanam 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信