{"title":"Dense circuit graphs and the planar Turán number of a cycle","authors":"Ruilin Shi, Zach Walsh, Xingxing Yu","doi":"10.1002/jgt.23165","DOIUrl":null,"url":null,"abstract":"<p>The <i>planar Turán number</i> <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> of a graph <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> is the maximum number of edges in an <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>-vertex planar graph without <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> as a subgraph. Let <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> denote the cycle of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>. The planar Turán number <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is known for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mn>7</mn>\n </mrow></math>. We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> so that <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>6</mn>\n \n <mo>−</mo>\n \n <mi>D</mi>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <msup>\n <mi>k</mi>\n \n <mrow>\n <msub>\n <mi>log</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo> </mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n </mrow></math> for all <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <msup>\n <mi>k</mi>\n \n <mrow>\n <msub>\n <mi>log</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo> </mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n </mrow></math>. When <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>11</mn>\n </mrow></math> this bound is tight up to the constant <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"27-38"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23165","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23165","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The planar Turán number of a graph is the maximum number of edges in an -vertex planar graph without as a subgraph. Let denote the cycle of length . The planar Turán number is known for . We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant so that for all and . When this bound is tight up to the constant and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .