Dense circuit graphs and the planar Turán number of a cycle

IF 0.9 3区 数学 Q2 MATHEMATICS
Ruilin Shi, Zach Walsh, Xingxing Yu
{"title":"Dense circuit graphs and the planar Turán number of a cycle","authors":"Ruilin Shi,&nbsp;Zach Walsh,&nbsp;Xingxing Yu","doi":"10.1002/jgt.23165","DOIUrl":null,"url":null,"abstract":"<p>The <i>planar Turán number</i> <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> of a graph <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> is the maximum number of edges in an <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>-vertex planar graph without <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> as a subgraph. Let <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> denote the cycle of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>. The planar Turán number <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is known for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mn>7</mn>\n </mrow></math>. We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> so that <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>6</mn>\n \n <mo>−</mo>\n \n <mi>D</mi>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <msup>\n <mi>k</mi>\n \n <mrow>\n <msub>\n <mi>log</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo> </mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n </mrow></math> for all <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <msup>\n <mi>k</mi>\n \n <mrow>\n <msub>\n <mi>log</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo> </mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n </mrow></math>. When <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>11</mn>\n </mrow></math> this bound is tight up to the constant <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"27-38"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23165","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23165","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The planar Turán number ex P ( n , H ) of a graph H is the maximum number of edges in an n -vertex planar graph without H as a subgraph. Let C k denote the cycle of length k . The planar Turán number ex P ( n , C k ) is known for k 7 . We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant D so that ex P ( n , C k ) 3 n 6 D n / k log 2 3 for all k 4 and n k log 2 3 . When k 11 this bound is tight up to the constant D and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.

Abstract Image

密集电路图和循环的平面图兰数
图的平面图兰数是一个无顶点平面图的最大边数。让 表示长度为 的循环。平面图兰数是已知的。我们证明了具有一定连通性的密集平面图(称为回路图)包含大的近三角形,并利用这一结果得到了平面图兰数的结果。特别是,我们证明存在一个常数,使得对于所有 和 。当这一约束严格到常数时,就证明了 Cranston、Lidický、Liu 和 Shantanam 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信