{"title":"Chaotic dynamics under the influence of a synthetic magnetic field in an optomechanical system","authors":"Souvik Mondal, Murilo S. Baptista, Kapil Debnath","doi":"10.1103/physreva.110.023509","DOIUrl":null,"url":null,"abstract":"Optomechanical systems produce chaotic behavior due to the nonlinear interaction between photons and phonons, and the same systems are used to understand the synthetic fields as well. Here, we report on the study of chaotic behavior in the presence of a phononic synthetic magnetic field in a closed-loop configuration consisting of a single optical mode and two mechanical modes. The modulation phase of the mechanical coupling between the two mechanical modes plays a critical role in determining the mechanical and optical intensity dynamics in the nonlinear regime. Our study shows the dark mode breaking effect in the presence of a synthetic magnetic field, which brings about a complex way of mechanical energy exchange that causes the cavity field to alternate between chaotic and regular behavior periodically in the temporal domain. However, in the stronger nonlinear regime the temporal dynamics demonstrate predominantly chaotic behavior. With the advent of advanced fabrication technologies, this study holds promises in developing phase tunable integrated low-power chaotic light sources to support efficient optical secure communication systems.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.023509","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Optomechanical systems produce chaotic behavior due to the nonlinear interaction between photons and phonons, and the same systems are used to understand the synthetic fields as well. Here, we report on the study of chaotic behavior in the presence of a phononic synthetic magnetic field in a closed-loop configuration consisting of a single optical mode and two mechanical modes. The modulation phase of the mechanical coupling between the two mechanical modes plays a critical role in determining the mechanical and optical intensity dynamics in the nonlinear regime. Our study shows the dark mode breaking effect in the presence of a synthetic magnetic field, which brings about a complex way of mechanical energy exchange that causes the cavity field to alternate between chaotic and regular behavior periodically in the temporal domain. However, in the stronger nonlinear regime the temporal dynamics demonstrate predominantly chaotic behavior. With the advent of advanced fabrication technologies, this study holds promises in developing phase tunable integrated low-power chaotic light sources to support efficient optical secure communication systems.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics